ANSI/ASHRAE/IESNA Standard 90.1-2007

(Supersedes ANSI/ASHRAE/IESNA Standard 90.1-2004) Includes ANSI/ASHRAE/IESNA Addenda listed in Appendix F

ASHRAE STANDARD

Energy Standard for Buildings Except Low-Rise Residential Buildings

I-P Edition

See Appendix F for approval dates by the ASHRAE Standards Committee, the ASHRAE Board of Directors, the IESNA Board of Directors, and the American National Standards Institute.

This standard is under continuous maintenance by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. The change submittal form, instructions, and deadlines may be obtained in electronic form from the ASHRAE Web site, http://www.ashrae.org, or in paper form from the Manager of Standards. The latest edition of an ASHRAE Standard may be purchased from ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: orders@ashrae.org. Fax: 404-321-5478. Telephone: 404-636-8400 (worldwide), or toll free 1-800-527-4723 (for orders in US and Canada).

©Copyright 2007 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ISSN 1041-2336

Jointly sponsored by

Illuminating Engineering Society of North America www.iesna.org

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE, Atlanta, GA 30329 www.ashrae.org

ASHRAE Standing Standard Project Committee 90.1 Cognizant TC: TC 7.6, Systems Energy Utilization SPLS Liaisons: Hugh F. Crowther and Ross Montgomery ASHRAE Staff Liaison: Steven C. Ferguson IESNA Liaison: Rita M. Harrold

Jerry W. White, Jr., Chair*	Jason J. Glazer*	Frank T. Morrison
James M. Calm, <i>Vice-Chair</i> *	S. Pekka Hakkarainen*	Frank Myers*
	Katherine G. Hammack*	Ronald G. Nickson
Michael Schwedler, Vice-Chair*		
Carol E. Marriott, Vice-Chair	Susanna S. Hanson	Jim A. Ranfone
Wagdy A.Y. Anis*	Richard V. Heinisch*	Eric E. Richman*
Anthony Arbore	Ned B. Heminger	Michael I. Rosenberg*
Karim Amrane*	Randall T. Higa*	Steven Rosenstock*
William P. Bahnfleth*	John F. Hogan*	Robert D. Ross*
Peter A. Baselici*	William G. Holy*	David A. Schaaf, Jr.*
Van D. Baxter*	Hyman M. Kaplan*	Leonard C. Sciarra*
Denise M. Beach	Larry Kouma*	Bipin Vadilal Shah*
Donald L. Beaty*	Ronald D. Kurtz*	Stephen V. Skalko*
Valerie L. Block	Samantha H. LaFleur	Frank A. Stanonik*
Donald M. Brundage*	Michael D. Lane*	Dennis Sczomak*
Ken Brendan*	Dean E. Lewis	Joseph K. Ting
Ernest A. Conrad	Richard Lord	Cedric S. Trueman*
Charles C. Cottrell*	Kenneth Luther*	Martha G. VanGeem
Roy Crane*	Ronald Majette*	Carl Wagus*
Joseph J. Deringer*	Itzhak H. Maor*	McHenry Wallace, Jr.*
Keith I. Emerson*	R. Christopher Mathis	Richard D. Watson*
Drake H. Erbe*	Merle F. McBride	David Weitz*
Thomas A. Farkas	Michael W. Mehl	Robin Wilson
Charles R. Foster, III	Harry P. Misuriello	Michael W. Woodford
Allan Fraser*	Louis J. Molinini	Donald R. Wulfinghoff
James A. Garrigus*	John Montgomery*	Stanley W. Zajac

^{*}Denotes members of voting status when this standard was approved for publication.

CONTENTS

ANSI/ASHRAE/IESNA Standard 90.1-2007 Energy Standard for Buildings Except Low-Rise Residential Buildings (I-P Edition)

SECTION	PAGE
Foreword	4
1 Purpose	4
2 Scope	4
3 Definitions, Abbreviations, and Acronyms	4
4 Administration and Enforcement	15
5 Building Envelope	17
6 Heating, Ventilating, and Air Conditioning	30
7 Service Water Heating	55
8 Power	58
9 Lighting	58
10 Other Equipment	65
11 Energy Cost Budget Method	66
12 Normative References	74
Normative Appendix A: Rated R-Value of Insulation and Assembly U-Factor, C-Factor, and F-Factor Determinati	ons77
Normative Appendix B: Building Envelope Climate Criteria	105
Normative Appendix C: Methodology for Building Envelope Trade-Off Option in Subsection 5.6	115
Normative Appendix D: Climatic Data	
Informative Appendix E: Informative References	
Informative Appendix F: Addenda Description Information	
Informative Appendix G: Performance Rating Method	1/5

NOTE

When addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at http://www.ashrae.org.

© Copyright 2007 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE Atlanta, GA 30329 www.ashrae.org

All rights reserved.

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

The original Standard 90 was published in 1975 and revised editions were published in 1980, 1989, and 1999 using the ANSI and ASHRAE periodic maintenance procedures. Based upon these procedures, the entire standard was publicly reviewed and published in its entirety each time. As technology and energy prices began changing more rapidly, however, the ASHRAE Board of Directors voted in 1999 to place the standard on continuous maintenance, permitting the standard to be updated several times each year through the publication of approved addenda to the standard. Starting with the 2001 edition, the standard is now published in its entirety in the fall of every third year. This schedule allows the standard to be submitted and proposed by the deadline for inclusion or reference in model building and energy codes. All approved addenda and errata will be included in the new edition every three years. This procedure allows users to have some certainty about when new editions will be published.

This 2007 edition of the standard has several new features and includes changes resulting from the continuous maintenance proposals from the public. The committee welcomes suggestions for improving the standard. Users of the standard are encouraged and invited to use the continuous maintenance procedure to suggest changes. A form for submittal of a proposed change is included in the back of this standard. The committee will take formal action on every proposal received.

The project committee is continually considering changes and proposing addenda for public review. When addenda are approved, notices will be published on the ASHRAE and IESNA Web sites. Users are encouraged to sign up for the free ASHRAE and IESNA Internet Listserv for this standard to receive notice of all public reviews and approved and published addenda and errata.

This edition corrects all known typographical errors in the 2004 standard. It also includes the content of 31 addenda that were processed by the committee and approved by the ASHRAE and IESNA Boards of Directors. For brief descriptions and the publication dates of the addenda to 90.1-2004, see Appendix F.

1. PURPOSE

The purpose of this standard is to provide minimum requirements for the energy-efficient design of buildings except low-rise residential buildings.

2. SCOPE

- **2.1** This standard provides:
- a. minimum energy-efficient requirements for the design and construction of:

- 1. new buildings and their systems
- . new portions of buildings and their systems
- 3. new systems and equipment in existing buildings
- criteria for determining compliance with these requirements.
- **2.2** The provisions of this standard apply to:
- a. the envelope of buildings, provided that the enclosed spaces are
 - 1. heated by a heating system whose output capacity is greater than or equal to 3.4 Btu/h·ft² or
 - 2. cooled by a cooling system whose sensible output capacity is greater than or equal to 5 Btu/h·ft², and
- b. the following systems and equipment used in conjunction with buildings:
 - 1. heating, ventilating, and air conditioning,
 - 2. service water heating,
 - 3. electric power distribution and metering provisions,
 - 4. electric motors and belt drives, and
 - 5. lighting.
- 2.3 The provisions of this standard do not apply to
- single-family houses, multi-family structures of three stories or fewer above grade, manufactured houses (mobile homes), and manufactured houses (modular),
- b. buildings that do not use either electricity or fossil fuel, or
- equipment and portions of building systems that use energy primarily to provide for industrial, manufacturing, or commercial processes.
- **2.4** Where specifically noted in this standard, certain other buildings or elements of buildings shall be exempt.
- **2.5** This standard shall not be used to circumvent any safety, health, or environmental requirements.

3. DEFINITIONS, ABBREVIATIONS, AND ACRONYMS

3.1 General. Certain terms, abbreviations, and acronyms are defined in this section for the purposes of this standard. These definitions are applicable to all sections of this standard. Terms that are not defined shall have their ordinarily accepted meanings within the context in which they are used. Ordinarily accepted meanings shall be based upon American standard English language usage as documented in an unabridged dictionary accepted by the *adopting authority*.

3.2 Definitions

above-grade wall: see wall.

access hatch: see door.

addition: an extension or increase in floor area or height of a building outside of the existing building envelope.

adopting authority: the agency or agent that adopts this standard.

alteration: a replacement or addition to a building or its systems and equipment; routine maintenance, repair, and service or a change in the building's use classification or category shall not constitute an alteration.

annual fuel utilization efficiency (AFUE): an efficiency descriptor of the ratio of annual output energy to annual input energy as developed in accordance with the requirements of U.S. Department of Energy (DOE) 10 CFR Part 430.

astronomical time switch: a device that turns the lighting on at a time relative to sunset and off at a time relative to sunrise, accounting for geographic location and day of year.

attic and other roofs: see roof.

authority having jurisdiction: the agency or agent responsible for enforcing this standard.

automatic: self-acting, operating by its own mechanism when actuated by some nonmanual influence, such as a change in current strength, pressure, temperature, or mechanical configuration. (See *manual*.)

automatic control device: a device capable of automatically turning loads off and on without manual intervention.

balancing, air system: adjusting airflow rates through air distribution system devices, such as fans and diffusers, by manually adjusting the position of dampers, splitter vanes, extractors, etc., or by using automatic control devices, such as constant air volume or variable-air-volume (VAV) boxes.

balancing, **hydronic system**: adjusting water flow rates through hydronic distribution system devices, such as pumps and coils, by manually adjusting the position valves or by using automatic control devices, such as automatic flow control valves.

ballast: a device used in conjunction with an electricdischarge lamp to cause the lamp to start and operate under the proper circuit conditions of voltage, current, wave form, electrode heat, etc.

ballast, **electronic**: a ballast constructed using electronic circuitry.

ballast, **hybrid**: a ballast constructed using a combination of magnetic core and insulated wire winding and electronic circuitry.

ballast, magnetic: a ballast constructed with magnetic core and a winding of insulated wire.

baseline building design: a computer representation of a hypothetical design based on the proposed building project. This representation is used as the basis for calculating the baseline building performance for rating above-standard design.

baseline building performance: the annual energy cost for a building design intended for use as a baseline for rating above-standard design.

below-grade wall: see wall.

boiler: a self-contained low-pressure appliance for supplying steam or hot water.

boiler, **packaged**: a boiler that is shipped complete with heating equipment, mechanical draft equipment, and automatic controls; usually shipped in one or more sections. A packaged boiler includes factory-built boilers manufactured as a unit or system, disassembled for shipment, and reassembled at the site.

branch circuit: the circuit conductors between the final overcurrent device protecting the circuit and the outlet(s); the final wiring run to the load.

budget building design: a computer representation of a hypothetical design based on the actual proposed building design. This representation is used as the basis for calculating the *energy cost budget*.

building: a structure wholly or partially enclosed within exterior walls, or within exterior and party walls, and a roof, affording shelter to persons, animals, or property.

building entrance: any doorway, set of doors, turnstile, vestibule, or other form of portal that is ordinarily used to gain access to the building by its users and occupants.

building envelope: the exterior plus the semi-exterior portions of a building. For the purposes of determining building envelope requirements, the classifications are defined as follows:

building envelope, exterior: the elements of a building that separate conditioned spaces from the exterior.

building envelope, semi-exterior: the elements of a building that separate conditioned space from unconditioned space or that enclose semiheated spaces through which thermal energy may be transferred to or from the exterior, or to or from unconditioned spaces, or to or from conditioned spaces.

building exit: any doorway, set of doors, or other form of portal that is ordinarily used only for emergency egress or convenience exit.

building grounds lighting: lighting provided through a building's electrical service for parking lot, site, roadway, pedestrian pathway, loading dock, or security applications.

building material: any element of the building envelope through which heat flows and that is included in the component U-factor calculations other than air films and insulation.

building official: the officer or other designated representative authorized to act on behalf of the *authority having jurisdiction*.

C-factor (*thermal conductance*): time rate of steady-state heat flow through unit area of a material or construction, induced by a unit temperature difference between the body surfaces. Units of C are Btu/h·ft².°F. Note that the C-factor does not include soil or air films.

circuit breaker: a device designed to open and close a circuit by nonautomatic means and to open the circuit automatically at a predetermined overcurrent without damage to itself when properly applied within its rating.

class of construction: for the building envelope, a subcategory of roof, above-grade wall, below-grade wall, floor, slab-ongrade floor, opaque door, vertical fenestration, or skylight. (See roof, wall, floor, slab-on-grade floor, door, and fenestration.)

clerestory: that part of a building that rises clear of the roofs or other parts and whose walls contain windows for lighting the interior.

code official: see building official.

coefficient of performance (COP)—cooling: the ratio of the rate of heat removal to the rate of energy input, in consistent units, for a complete refrigerating system or some specific portion of that system under designated operating conditions.

coefficient of performance (COP), heat pump—heating: the ratio of the rate of heat delivered to the rate of energy input, in consistent units, for a complete heat pump system, including the compressor and, if applicable, auxiliary heat, under designated operating conditions.

conditioned floor area: see floor area.

conditioned space: see space.

conductance: see thermal conductance.

continuous insulation (c.i.): insulation that is continuous across all structural members without thermal bridges other than fasteners and service openings. It is installed on the interior or exterior or is integral to any opaque surface of the building envelope.

control: to regulate the operation of equipment.

control device: a specialized device used to regulate the operation of equipment.

construction: the fabrication and erection of a new building or any addition to or alteration of an existing building.

construction documents: drawings and specifications used to construct a building, building systems, or portions thereof.

cool down: reduction of space temperature down to occupied setpoint after a period of shutdown or setup.

cooled space: see space.

cooling degree-day: see degree-day.

cooling design temperature: the outdoor dry-bulb temperature equal to the temperature that is exceeded by 1% of the number of hours during a typical weather year.

cooling design wet-bulb temperature: the outdoor wet-bulb temperature for sizing cooling systems and evaporative heat rejection systems such as cooling towers.

dead band: the range of values within which a sensed variable can vary without initiating a change in the controlled process.

decorative lighting: see lighting, decorative.

degree-day: the difference in temperature between the outdoor mean temperature over a 24-hour period and a given base temperature. For the purposes of determining building envelope requirements, the classifications are defined as follows:

cooling degree-day base 50°F (CDD50): for any one day, when the mean temperature is more than 50°F, there are as many degree-days as degrees Fahrenheit temperature difference between the mean temperature for the day and 50°F. Annual cooling degree-days (CDDs) are the sum of the degree-days over a calendar year.

heating degree-day base 65°F (HDD65): for any one day, when the mean temperature is less than 65°F, there are as many degree-days as degrees Fahrenheit temperature difference between the mean temperature for the day and 65°F. Annual heating degree-days (HDDs) are the sum of the degree-days over a calendar year.

demand: the highest amount of power (average Btu/h over an interval) recorded for a building or facility in a selected time frame.

demand control ventilation (DCV): a ventilation system capability that provides for the automatic reduction of outdoor air intake below design rates when the actual occupancy of spaces served by the system is less than design occupancy.

design capacity: output capacity of a system or piece of equipment at design conditions.

design conditions: specified environmental conditions, such as temperature and light intensity, required to be produced and maintained by a system and under which the system must operate.

design energy cost: the annual energy cost calculated for a proposed design.

design professional: an architect or engineer licensed to practice in accordance with applicable state licensing laws.

direct digital control (DDC): a type of control where controlled and monitored analog or binary data (e.g., temperature, contact closures) are converted to digital format for manipulation and calculations by a digital computer or microprocessor, then converted back to analog or binary form to control physical devices.

disconnect: a device or group of devices or other means by which the conductors of a circuit can be disconnected from their source of supply.

distribution system: conveying means, such as ducts, pipes, and wires, to bring substances or energy from a source to the point of use. The distribution system includes such auxiliary equipment as fans, pumps, and *transformers*.

door: all operable opening areas (which are not fenestration) in the building envelope, including swinging and roll-up doors, fire doors, and access hatches. Doors that are more than one-half glass are considered fenestration. (See *fenestration*.) For the purposes of determining building envelope requirements, the classifications are defined as follows:

nonswinging: roll-up, sliding, and all other doors that are not swinging doors.

swinging: all operable opaque panels with hinges on one side and opaque revolving doors.

door area: total area of the door measured using the rough opening and including the door slab and the frame. (See *fenestration area*.)

dwelling unit: a single unit providing complete independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating, cooking, and sanitation.

economizer, air: a duct and damper arrangement and automatic control system that together allow a cooling system to supply outdoor air to reduce or eliminate the need for mechanical cooling during mild or cold weather.

economizer, water: a system by which the supply air of a cooling system is cooled indirectly with water that is itself cooled by heat or mass transfer to the environment without the use of mechanical cooling.

efficacy (of a lamp): the ratio of the total luminous output of a lamp to the total power input to the lamp; typically expressed in lumens per watt.

efficiency: performance at specified rating conditions.

emittance: the ratio of the radiant heat flux emitted by a specimen to that emitted by a blackbody at the same temperature and under the same conditions.

enclosed space: a volume substantially surrounded by solid surfaces such as walls, floors, roofs, and openable devices such as doors and operable windows.

energy: the capacity for doing work. It takes a number of forms that may be transformed from one into another such as thermal (heat), mechanical (work), electrical, and chemical. Customary measurement units are British thermal units (Btu).

energy cost budget: the annual energy cost for the budget building design intended for use in determining minimum compliance with this standard.

energy efficiency ratio (EER): the ratio of net cooling capacity in Btu/h to total rate of electric input in watts under designated operating conditions. (See coefficient of performance [COP]—cooling.)

energy factor (EF): a measure of water heater overall efficiency.

envelope performance factor: the trade-off value for the building envelope performance compliance option calculated using the procedures specified in Section 5. For the purposes of determining building envelope requirements, the classifications are defined as follows:

base envelope performance factor: the building envelope performance factor for the base design.

proposed envelope performance factor: the building envelope performance factor for the proposed design.

equipment: devices for comfort conditioning, electric power, lighting, transportation, or service water heating including, but not limited to, furnaces, boilers, air conditioners, heat pumps, chillers, water heaters, lamps, luminaires, ballasts, elevators, escalators, or other devices or installations.

existing building: a building or portion thereof that was previously occupied or approved for occupancy by the authority having jurisdiction.

existing equipment: equipment previously installed in an existing building.

existing system: a system or systems previously installed in an existing building.

exterior building envelope: see building envelope.

exterior lighting power allowance: see lighting power allowance.

eye adaptation: the process by which the retina becomes accustomed to more or less light than it was exposed to during an immediately preceding period. It results in a change in the sensitivity to light.

F-factor: the perimeter heat loss factor for slab-on-grade floors, expressed in $Btu/h \cdot ft \cdot {}^{\circ}F$.

facade area: area of the facade, including overhanging soffits, cornices, and protruding columns, measured in elevation in a vertical plane parallel to the plane of the face of the building. Nonhorizontal roof surfaces shall be included in the calculation of vertical facade area by measuring the area in a plane parallel to the surface.

fan brake horsepower: the horsepower delivered to the fan's shaft. Brake horsepower (bhp) does not include the mechanical drive losses (belts, gears, etc.).

fan system bhp: the sum of the fan brake horsepower (bhp) of all fans that are required to operate at fan system design conditions to supply air from the heating or cooling source to the conditioned space(s) and return it to the source or exhaust it to the outdoors.

fan system design conditions: operating conditions that can be expected to occur during normal system operation that result in the highest supply airflow rate to conditioned spaces served by the system.

fan system motor nameplate horsepower: the sum of the motor nameplate horsepower (hp) of all fans that are required to operate at design conditions to supply air from the heating or cooling source to the conditioned space(s) and return it to the source or exhaust it to the outdoors.

feeder conductors: the wires that connect the service equipment to the branch circuit breaker panels.

fenestration: all areas (including the frames) in the building envelope that let in light, including windows, plastic panels, clerestories, skylights, doors that are more than one-half glass, and glass block walls. (See *building envelope* and *door*.)

skylight: a fenestration surface having a slope of less than 60 degrees from the horizontal plane. Other fenestration, even if mounted on the roof of a building, is considered *vertical fenestration*.

vertical fenestration: all fenestration other than *skylights*. Trombe wall assemblies, where glazing is installed within 12 in. of a mass wall, are considered walls, not fenestration.

fenestration area: total area of the fenestration measured using the rough opening and including the glazing, sash, and frame. For doors where the glazed vision area is less than 50% of the door area, the fenestration area is the glazed vision area. For all other doors, the fenestration area is the door area. (See door area.)

fenestration, vertical: see fenestration and skylight.

fixture: the component of a luminaire that houses the lamp or lamps, positions the lamp, shields it from view, and distributes the light. The fixture also provides for connection to the power supply, which may require the use of a ballast.

floor, envelope: that lower portion of the building envelope, including opaque area and fenestration, that has conditioned or semiheated space above and is horizontal or tilted at an angle of less than 60 degrees from horizontal but excluding slab-on-grade floors. For the purposes of determining building envelope requirements, the classifications are defined as follows:

mass floor: a floor with a heat capacity that exceeds (1) 7 Btu/ft².°F or (2) 5 Btu/ft².°F provided that the floor has a material unit mass not greater than 120 lb/ft³.

steel-joist floor: a floor that (1) is not a mass floor and (2) that has steel joist members supported by structural members.

wood-framed and other floors: all other floor types, including wood joist floors.

(See building envelope, fenestration, opaque area, and slab-on-grade floor).

floor area, gross: the sum of the floor areas of the spaces within the building, including basements, mezzanine and intermediate-floored tiers, and penthouses with a headroom height of 7.5 ft or greater. It is measured from the exterior faces of exterior walls or from the centerline of walls separating buildings, but excluding covered walkways, open roofed-over areas, porches and similar spaces, pipe trenches, exterior terraces or steps, chimneys, roof overhangs, and similar features.

gross building envelope floor area: the gross floor area of the building envelope, but excluding slab-on-grade floors.

gross conditioned floor area: the gross floor area of conditioned spaces.

gross lighted floor area: the gross floor area of lighted spaces.

gross semiheated floor area: the gross floor area of semiheated spaces.

(See building envelope, floor, slab-on-grade floor, and space.)

flue damper: a device in the flue outlet or in the inlet of or upstream of the draft control device of an individual, automatically operated, fossil fuel-fired appliance that is designed to automatically open the flue outlet during appliance operation and to automatically close the flue outlet when the appliance is in a standby condition.

fossil fuel: fuel derived from a hydrocarbon deposit such as petroleum, coal, or natural gas derived from living matter of a previous geologic time.

fuel: a material that may be used to produce heat or generate power by combustion.

general lighting: see lighting, general.

generally accepted engineering standard: a specification, rule, guide, or procedure in the field of engineering, or related thereto, recognized and accepted as authoritative.

grade: the finished ground level adjoining a building at all exterior walls.

gross lighted area (GLA): see floor area, gross: gross lighted floor area.

gross roof area: see roof area, gross.

gross wall area: see wall area, gross.

heat capacity (HC): the amount of heat necessary to raise the temperature of a given mass $1^{\circ}F$. Numerically, the HC per unit area of surface (Btu/ft². $^{\circ}F$) is the sum of the products of the mass per unit area of each individual material in the roof, wall, or floor surface multiplied by its individual specific heat.

heated space: see *space*.

heat trace: a heating system where the externally applied heat source follows (traces) the object to be heated, e.g., water piping.

heating design temperature: the outdoor dry-bulb temperature equal to the temperature that is exceeded at least 99.6% of the number of hours during a typical weather year.

heating degree-day: see degree-day.

heating seasonal performance factor (HSPF): the total heating output of a heat pump during its normal annual usage period for heating (in Btu) divided by the total electric energy input during the same period.

high-frequency electronic ballast: ballasts that operate at a frequency greater than 20 kHz.

historic: a building or space that has been specifically designated as historically significant by the adopting authority or is listed in The National Register of Historic Places or has been determined to be eligible for such listing by the US Secretary of the Interior.

hot-water supply boiler: a boiler used to heat water for purposes other than space heating.

humidistat: an automatic control device used to maintain humidity at a fixed or adjustable setpoint.

HVAC system: the equipment, distribution systems, and terminals that provide, either collectively or individually, the processes of heating, ventilating, or air conditioning to a building or portion of a building.

indirectly conditioned space: see space.

infiltration: the uncontrolled inward air leakage through cracks and crevices in any building element and around windows and doors of a building caused by pressure differences across these elements due to factors such as wind, inside and outside temperature differences (stack effect), and imbalance between supply and exhaust air systems.

installed interior lighting power: the power in watts of all permanently installed general, task, and furniture lighting systems and luminaires.

integrated part-load value (IPLV): a single-number figure of merit based on part-load EER, COP, or kW/ton expressing part-load efficiency for air-conditioning and heat pump equipment on the basis of weighted operation at various load capacities for the equipment.

interior lighting power allowance: see lighting power allowance.

isolation devices: devices that isolate HVAC zones so that they can be operated independently of one another. Isolation devices include, but are not limited to, separate systems, isolation dampers, and controls providing shutoff at terminal boxes.

joist, steel: any structural steel member of a building or structure made of hot-rolled or cold-rolled solid or open-web sections.

kilovolt-ampere (kVA): where the term kilovolt-ampere (kVA) is used in this standard, it is the product of the line current (amperes) times the nominal system voltage (kilovolts) times 1.732 for three-phase currents. For single-phase applications, kVA is the product of the line current (amperes) times the nominal system voltage (kilovolts).

kilowatt (kW): the basic unit of electric power, equal to 1000 W.

labeled: equipment or materials to which a symbol or other identifying mark has been attached by the manufacturer indicating compliance with specified standards or performance in a specified manner.

lamp: a generic term for a man-made light source often called a *bulb* or *tube*.

compact fluorescent lamp: a fluorescent lamp of a small compact shape, with a single base that provides the entire mechanical support function.

fluorescent lamp: a low-pressure electric discharge lamp in which a phosphor coating transforms some of the ultraviolet energy generated by the discharge into light.

general service lamp: a class of incandescent lamps that provide light in virtually all directions. *General service lamps* are typically characterized by bulb shapes such as

A, standard; S, straight side; F, flame; G, globe; and PS, pear straight.

high-intensity discharge (HID) lamp: an electric discharge lamp in which light is produced when an electric arc is discharged through a vaporized metal such as mercury or sodium. Some HID lamps may also have a phosphor coating that contributes to the light produced or enhances the light color.

incandescent lamp: a lamp in which light is produced by a filament heated to incandescence by an electric current.

reflector lamp: a class of incandescent lamps that have an internal reflector to direct the light. Reflector lamps are typically characterized by reflective characteristics such as R, reflector; ER, ellipsoidal reflector; PAR, parabolic aluminized reflector; MR, mirrorized reflector; and others.

lighting, decorative: lighting that is purely ornamental and installed for aesthetic effect. Decorative lighting shall not include *general lighting*.

lighting, general: lighting that provides a substantially uniform level of illumination throughout an area. General lighting shall not include *decorative lighting* or lighting that provides a dissimilar level of illumination to serve a specialized application or feature within such area.

lighting system: a group of luminaires circuited or controlled to perform a specific function.

lighting power allowance:

interior lighting power allowance: the maximum lighting power in watts allowed for the interior of a building.

exterior lighting power allowance: the maximum lighting power in watts allowed for the exterior of a building.

lighting power density (LPD): the maximum lighting power per unit area of a building classification of space function.

low-rise residential buildings: single-family houses, multi-family structures of three stories or fewer above grade, manufactured houses (mobile homes), and manufactured houses (modular).

luminaire: a complete lighting unit consisting of a lamp or lamps together with the housing designed to distribute the light, position and protect the lamps, and connect the lamps to the power supply.

manual (nonautomatic): requiring personal intervention for control. Nonautomatic does not necessarily imply a manual controller, only that personal intervention is necessary. (See *automatic*.)

manufacturer: the company engaged in the original production and assembly of products or equipment or a company that purchases such products and equipment manufactured in accordance with company specifications.

mass floor: see floor.

mass wall: see wall.

mean temperature: one-half the sum of the minimum daily temperature and maximum daily temperature.

mechanical heating: raising the temperature of a gas or liquid by use of fossil fuel burners, electric resistance heaters, heat pumps, or other systems that require energy to operate.

mechanical cooling: reducing the temperature of a gas or liquid by using vapor compression, absorption, desiccant dehumidification combined with evaporative cooling, or another energy-driven thermodynamic cycle. Indirect or direct evaporative cooling alone is not considered mechanical cooling.

metal building: a complete integrated set of mutually dependent components and assemblies that form a building, which consists of a steel-framed superstructure and metal skin.

metal building roof: see roof.

metal building wall: see wall.

metering: instruments that measure electric voltage, current, power, etc.

motor power, rated: the rated output power from the motor.

nameplate horsepower: the nominal motor horsepower rating stamped on the motor nameplate.

nameplate rating: the design load operating conditions of a device as shown by the manufacturer on the nameplate or otherwise marked on the device.

nonautomatic: see manual.

nonrecirculating system: a domestic or service hot-water distribution system that is not a recirculating system.

nonrenewable energy: energy derived from a fossil fuel source.

nonresidential: all occupancies other than residential. (See *residential.*)

nonstandard part-load value (NPLV): a single-number part-load efficiency figure of merit calculated and referenced to conditions other than IPLV conditions, for units that are not designed to operate at ARI Standard Rating Conditions.

nonswinging door: see door.

north-oriented: facing within 45 degrees of true north (north-ern hemisphere).

occupant sensor: a device that detects the presence or absence of people within an area and causes lighting, equipment, or appliances to be regulated accordingly.

opaque: all areas in the building envelope, except fenestration and building service openings such as vents and grilles. (See *building envelope* and *fenestration*.)

optimum start controls: controls that are designed to automatically adjust the start time of an HVAC system each day with the intention of bringing the space to desired occupied temperature levels immediately before scheduled occupancy.

orientation: the direction an envelope element faces, i.e., the direction of a vector perpendicular to and pointing away from the surface outside of the element.

outdoor (*outside*) *air*: air that is outside the building envelope or is taken from outside the building that has not been previously circulated through the building.

overcurrent: any current in excess of the rated current of equipment or the ampacity of a conductor. It may result from overload, short circuit, or ground fault.

packaged terminal air conditioner (PTAC): a factoryselected wall sleeve and separate unencased combination of heating and cooling components, assemblies, or sections. It may include heating capability by hot water, steam, or electricity and is intended for mounting through the wall to serve a single room or zone.

packaged terminal heat pump (PTHP): a PTAC capable of using the refrigerating system in a reverse cycle or heat pump mode to provide heat.

party wall: a fire wall on an interior lot line used or adapted for joint service between two buildings.

Performance Rating Method: a calculation procedure that generates an index of merit for the performance of building designs that substantially exceeds the energy efficiency levels required by this standard.

permanently installed: equipment that is fixed in place and is not portable or movable.

photosensor: a device that detects the presence of visible light, infrared (IR) transmission, and/or ultraviolet (UV) energy.

plenum: a compartment or chamber to which one or more ducts are connected, that forms a part of the air distribution system, and that is not used for occupancy or storage. A plenum often is formed in part or in total by portions of the building.

pool: any structure, basin, or tank containing an artificial body of water for swimming, diving, or recreational bathing. The term includes, but is not limited to, swimming pool, whirlpool, spa, and hot tub.

process energy: energy consumed in support of a manufacturing, industrial, or commercial process other than conditioning spaces and maintaining comfort and amenities for the occupants of a building.

process load: the load on a building resulting from the consumption or release of process energy.

projection factor (PF): the ratio of the horizontal depth of the external shading projection divided by the sum of the height of the fenestration and the distance from the top of the fenestration to the bottom of the farthest point of the external shading projection, in consistent units.

proposed building performance: the annual energy cost calculated for a proposed design.

proposed design: a computer representation of the actual proposed building design or portion thereof used as the basis for calculating the design energy cost.

public facility restroom: a restroom used by the transient public.

pump system power: the sum of the nominal power demand (nameplate horsepower) of motors of all pumps that are required to operate at design conditions to supply fluid from the heating or cooling source to all heat transfer devices (e.g., coils, heat exchanger) and return it to the source.

purchased energy rates: costs for units of energy or power purchased at the building site. These costs may include energy costs as well as costs for power demand as determined by the *adopting authority*.

radiant heating system: a heating system that transfers heat to objects and surfaces within the heated space primarily (greater than 50%) by infrared radiation.

rated motor power: see motor power, rated.

rated R-value of insulation: the thermal resistance of the insulation alone as specified by the manufacturer in units of h·ft²·°F/Btu at a mean temperature of 75°F. Rated R-value refers to the thermal resistance of the added insulation in framing cavities or insulated sheathing only and does not include the thermal resistance of other building materials or air films. (See thermal resistance.)

rating authority: the organization or agency that adopts or sanctions use of this rating methodology.

readily accessible: capable of being reached quickly for operation, renewal, or inspection without requiring those to whom ready access is requisite to climb over or remove obstacles or to resort to portable ladders, chairs, etc. In public facilities, accessibility may be limited to certified personnel through locking covers or by placing equipment in locked rooms.

recirculating system: a domestic or service hot-water distribution system that includes a closed circulation circuit designed to maintain usage temperatures in hot-water pipes near terminal devices (e.g., lavatory faucets, shower heads) in order to reduce the time required to obtain hot water when the terminal device valve is opened. The motive force for circulation is either natural (due to water density variations with temperature) or mechanical (recirculation pump).

recooling: lowering the temperature of air that has been previously heated by a mechanical heating system.

record drawings: drawings that record the conditions of the project as constructed. These include any refinements of the construction or bid documents.

reflectance: the ratio of the light reflected by a surface to the light incident upon it.

reheating: raising the temperature of air that has been previously cooled either by mechanical refrigeration or an economizer system.

repair: the reconstruction or renewal of any part of an existing building for the purpose of its maintenance.

resistance, **electric**: the property of an electric circuit or of any object used as part of an electric circuit that determines for a given circuit the rate at which electric energy is converted into heat or radiant energy and that has a value such that the product of the resistance and the square of the current gives the rate of conversion of energy.

reset: automatic adjustment of the controller setpoint to a higher or lower value.

residential: spaces in buildings used primarily for living and sleeping. Residential spaces include, but are not limited to, dwelling units, hotel/motel guest rooms, dormitories, nursing homes, patient rooms in hospitals, lodging houses, fraternity/sorority houses, hostels, prisons, and fire stations.

roof: the upper portion of the building envelope, including opaque areas and fenestration, that is horizontal or tilted at an angle of less than 60° from horizontal. For the purposes of determining building envelope requirements, the classifications are defined as follows:

attic and other roofs: all other roofs, including roofs with insulation entirely below (inside of) the roof structure (i.e., attics, cathedral ceilings, and single-rafter ceilings), roofs with insulation both above and below the roof structure, and roofs without insulation but excluding metal building roofs.

metal building roof: a roof that is:

- constructed with a metal, structural, weathering surface.
- 2. has no ventilated cavity, and
- 3. has the insulation entirely below deck (i.e., does not include composite concrete and metal deck construction nor a roof framing system that is separated from the superstructure by a wood substrate) and whose structure consists of one or more of the following configurations:
- a. metal roofing in direct contact with the steel framing members
- b. insulation between the metal roofing and the steel framing members
- insulated metal roofing panels installed as described in 1 or 2

roof with insulation entirely above deck: a roof with all insulation

- 1. installed above (outside of) the roof structure and
- 2. continuous (i.e., uninterrupted by framing members).

single-rafter roof: a subcategory of attic roofs where the roof above and the ceiling below are both attached to the same wood rafter and where insulation is located in the space between these wood rafters.

roof area, gross: the area of the roof measured from the exterior faces of walls or from the centerline of party walls. (See *roof* and *wall*.)

room air conditioner: an encased assembly designed as a unit to be mounted in a window or through a wall or as a console. It is designed primarily to provide direct delivery of conditioned air to an enclosed space, room, or zone. It includes a prime source of refrigeration for cooling and dehumidification and a means for circulating and cleaning air. It may also include a means for ventilating and heating.

room cavity ratio (RCR): a factor that characterizes room configuration as a ratio between the walls and ceiling and is based upon room dimensions.

seasonal coefficient of performance—cooling (SCOP_C): the total cooling output of an air conditioner during its normal annual usage period for cooling divided by the total electric energy input during the same period in consistent units (analogous to the SEER but in I-P or other consistent units).

seasonal coefficient of performance—heating (SCOP_H): the total heating output of a heat pump during its normal annual usage period for heating divided by the total electric energy input during the same period in consistent units (analogous to the HSPF but in I-P or other consistent units).

seasonal energy efficiency ratio (SEER): the total cooling output of an air conditioner during its normal annual usage period for cooling (in Btu) divided by the total electric energy input during the same period (in Wh).

semi-exterior building envelope: see building envelope.

semiheated floor area: see floor area.

semiheated space: see space.

service: the equipment for delivering energy from the supply or distribution system to the premises served.

service agency: an agency capable of providing calibration, testing, or manufacture of equipment, instrumentation, metering, or control apparatus, such as a contractor, laboratory, or manufacturer.

service equipment: the necessary equipment, usually consisting of a circuit breaker or switch and fuses and accessories, located near the point of entrance of supply conductors to a building or other structure (or an otherwise defined area) and intended to constitute the main control and means of cutoff of the supply. Service equipment may consist of circuit breakers or fused switches provided to disconnect all under-grounded conductors in a building or other structure from the service-entrance conductors.

service water heating: heating water for domestic or commercial purposes other than space heating and process requirements.

setback: reduction of heating (by reducing the setpoint) or cooling (by increasing the setpoint) during hours when a building is unoccupied or during periods when lesser demand is acceptable.

setpoint: point at which the desired temperature (°F) of the heated or cooled space is set.

shading coefficient (SC): the ratio of solar heat gain at normal incidence through glazing to that occurring through 1/8 in.

thick clear, double-strength glass. SC, as used herein, does not include interior, exterior, or integral shading devices.

simulation program: a computer program that is capable of simulating the energy performance of building systems.

single-line diagram: a simplified schematic drawing that shows the connection between two or more items. Common multiple connections are shown as one line.

single-package vertical air conditioner (SPVAC): a type of air-cooled small or large commercial package air-conditioning and heating equipment; factory assembled as a single package having its major components arranged vertically, which is an encased combination of cooling and optional heating components; is intended for exterior mounting on, adjacent interior to, or through an outside wall; and is powered by single or three-phase current. It may contain separate indoor grille(s), outdoor louvers, various ventilation options, or indoor free air discharge, ductwork, wall plenum, or sleeve. Heating components may include electrical resistance, steam, hot water, gas, or no heat but may not include reverse cycle refrigeration as a heating means.

single-package vertical heat pump (SPVHP): an SPVAC that utilizes reverse cycle refrigeration as its primary heat source, with secondary supplemental heating by means of electrical resistance, steam, hot water, or gas.

single-rafter roof: see roof.

single-zone system: an HVAC system serving a single HVAC zone.

site-recovered energy: waste energy recovered at the building site that is used to offset consumption of purchased fuel or electrical energy supplies.

site-solar energy: thermal, chemical, or electrical energy derived from direct conversion of incident solar radiation at the building site and used to offset consumption of purchased fuel or electrical energy supplies. For the purposes of applying this standard, *site-solar energy* shall not include passive heat gain through fenestration systems.

skylight: see fenestration.

skylight well: the shaft from the skylight to the ceiling.

slab-on-grade floor: that portion of a slab floor of the building envelope that is in contact with the ground and that is either above grade or is less than or equal to 24 in. below the final elevation of the nearest exterior grade.

heated slab-on-grade floor: a slab-on-grade floor with a heating source either within or below it.

unheated slab-on-grade floor: a slab-on-grade floor that is not a heated slab-on-grade floor.

solar energy source: source of thermal, chemical, or electrical energy derived from direct conversion of incident solar radiation at the building site.

solar heat gain coefficient (SHGC): the ratio of the solar heat gain entering the space through the fenestration area to the incident solar radiation. Solar heat gain includes directly

transmitted solar heat and absorbed solar radiation, which is then reradiated, conducted, or convected into the space. (See *fenestration area*.)

space: an enclosed space within a building. The classifications of spaces are as follows for the purpose of determining building envelope requirements:

conditioned space: a cooled space, heated space, or indirectly conditioned space defined as follows:

- 1. *cooled space:* an enclosed space within a building that is cooled by a cooling system whose sensible output capacity exceeds 5 Btu/h·ft² of floor area.
- 2. **heated space:** an enclosed space within a building that is heated by a heating system whose output capacity relative to the floor area is greater than or equal to the criteria in Table 3.1.
- indirectly conditioned space: an enclosed space within a building that is not a heated space or a cooled space, which is heated or cooled indirectly by being connected to adjacent space(s) provided:
 - a. the product of the U-factor(s) and surface area(s) of the space adjacent to connected space(s) exceeds the combined sum of the product of the U-factor(s) and surface area(s) of the space adjoining the outdoors, unconditioned spaces, and to or from semiheated spaces (e.g., corridors) or
 - b. that air from heated or cooled spaces is intentionally transferred (naturally or mechanically) into the space at a rate exceeding 3 ach (e.g., atria).

semiheated space: an enclosed space within a building that is heated by a heating system whose output capacity is greater than or equal to 3.4 Btu/h·ft² of floor area but is not a conditioned space.

unconditioned space: an enclosed space within a building that is not a conditioned space or a semiheated space. Crawlspaces, attics, and parking garages with natural or mechanical ventilation are not considered enclosed spaces.

space-conditioning category:

nonresidential conditioned space,

residential conditioned space, and

nonresidential and residential semiheated space.

(See *nonresidential*, residential, and space.)

steel-framed wall: see wall.

steel-joist floor: see floor.

story: portion of a building that is between one finished floor level and the next higher finished floor level or the roof, provided, however, that a basement or cellar shall not be considered a story.

TABLE 3.1 Heated Space Criteria

Heating Output (Btu/h·ft ²)	Climate Zone
5	1 and 2
10	3
15	4 and 5
20	6 and 7
25	8

substantial contact: a condition where adjacent building materials are placed so that proximal surfaces are contiguous, being installed and supported so they eliminate voids between materials without compressing or degrading the thermal performance of either product.

swinging door: see door.

system: a combination of equipment and auxiliary devices (e.g., controls, accessories, interconnecting means, and terminal elements) by which energy is transformed so it performs a specific function such as HVAC, service water heating, or lighting.

system, existing: a system or systems previously installed in an existing building.

tandem wiring: pairs of luminaires operating with lamps in each luminaire powered from a single ballast contained in one of the luminaires.

task lighting: lighting directed to a specific surface or area that provides illumination for visual tasks.

terminal: a device by which energy from a system is finally delivered, e.g., registers, diffusers, lighting fixtures, faucets, etc.

thermal block: a collection of one or more HVAC zones grouped together for simulation purposes. Spaces need not be contiguous to be combined within a single thermal block.

thermal conductance: see C-factor.

thermal resistance (*R*-value): the reciprocal of the time rate of heat flow through a unit area induced by a unit temperature difference between two defined surfaces of material or construction under steady-state conditions. Units of R are $h \cdot ft^2 \cdot oF/Btu$.

thermal transmittance: see *U-factor*.

thermostat: an automatic control device used to maintain temperature at a fixed or adjustable setpoint.

thermostatic control: an automatic control device or system used to maintain temperature at a fixed or adjustable setpoint.

tinted: (as applied to fenestration) bronze, green, blue, or gray coloring that is integral with the glazing material. Tinting does not include surface-applied films such as reflective coatings, applied either in the field or during the manufacturing process.

transformer: a piece of electrical equipment used to convert electric power from one voltage to another voltage.

dry-type transformer: a transformer in which the core and coils are in a gaseous or dry compound.

liquid-immersed transformer: a *transformer* in which the core and coils are immersed in an insulating liquid.

U-factor (thermal transmittance): heat transmission in unit time through unit area of a material or construction and the boundary air films, induced by unit temperature difference between the environments on each side. Units of U are Btu/h·ft².°F.

unmet load hour: an hour in which one or more zones is outside of the thermostat setpoint range.

unconditioned space: see space.

unenclosed space: a space that is not an enclosed space.

unitary cooling equipment: one or more factory-made assemblies that normally include an evaporator or cooling coil and a compressor and condenser combination. Units that perform a heating function are also included.

unitary heat pump: one or more factory-made assemblies that normally include an indoor conditioning coil, compressor(s), and an outdoor refrigerant-to-air coil or refrigerant-to-water heat exchanger. These units provide both heating and cooling functions.

variable-air-volume (VAV) system: HVAC system that controls the dry-bulb temperature within a space by varying the volumetric flow of heated or cooled supply air to the space.

vent damper: a device intended for installation in the venting system of an individual, automatically operated, fossil-fuel-fired appliance in the outlet or downstream of the appliance draft control device, which is designed to automatically open the venting system when the appliance is in operation and to automatically close off the venting system when the appliance is in a standby or shutdown condition.

ventilation: the process of supplying or removing air by natural or mechanical means to or from any space. Such air is not required to have been conditioned.

vertical fenestration: see fenestration.

voltage drop: a decrease in voltage caused by losses in the lines connecting the power source to the load.

wall: that portion of the building envelope, including opaque area and fenestration, that is vertical or tilted at an angle of 60 degrees from horizontal or greater. This includes above- and below-grade walls, between floor spandrels, peripheral edges of floors, and foundation walls. For the purposes of determining building envelope requirements, the classifications are defined as follows:

above-grade wall: a wall that is not a below-grade wall.

below-grade wall: that portion of a wall in the building envelope that is entirely below the finish grade and in contact with the ground.

mass wall: a wall with an HC exceeding (1) 7 Btu/ft².°F or (2) 5 Btu/ft².°F, provided that the wall has a material unit weight not greater than 120 lb/ft³.

metal building wall: a wall whose structure consists of metal spanning members supported by steel structural members (i.e., does not include spandrel glass or metal panels in curtain wall systems).

steel-framed wall: a wall with a cavity (insulated or otherwise) whose exterior surfaces are separated by steel framing members (i.e., typical steel stud walls and curtain wall systems).

wood-framed and other walls: all other wall types, including wood stud walls.

wall area, gross: the area of the wall measured on the exterior face from the top of the floor to the bottom of the roof.

warm-up: increase in space temperature to occupied setpoint after a period of shutdown or setback.

water heater: vessel in which water is heated and is withdrawn for use external to the system.

wood-framed and other walls: see wall.

wood-framed and other floors: see floor.

zone, **HVAC**: a space or group of spaces within a building with heating and cooling requirements that are sufficiently similar so that desired conditions (e.g., temperature) can be maintained throughout using a single sensor (e.g., thermostat or temperature sensor).

3.3 Abbreviations and Acronyms

ac	alternating current
ach	air changes per hour

AFUE annual fuel utilization efficiency

AHAM Association of Home Appliance Manufacturers

ANSI American National Standards Institute

ARI Air-Conditioning and Refrigeration Institute
ASHRAE American Society of Heating, Refrigerating and

Air-Conditioning Engineers, Inc.

ASTM American Society for Testing and Materials bhp brake horsepowerBSRBoard of Standards

Review

Btu British thermal unit

Btu/h British thermal unit per hour

Btu/ft².°F British thermal unit per square foot per degree

FahrenheitBtu/h·ft²British thermal unit per hour per square foot Btu/h·ft·°FBritish thermal unit per hour per linear foot per degree Fahrenheit

Btu/h·ft².°F British thermal unit per hour per square foot per

degree Fahrenheit

CDD cooling degree-day

CDD50 cooling degree-days base 50°F

cfm cubic feet per minute c.i. continuous insulation

Additional rep	roduction, distribution, or transmission in either print of
COP	coefficient of performance
CTI	Cooling Technology Institute
DDC	direct digital control
DOE	U.S. Department of Energy
Ec	combustion efficiency
EER	energy efficiency ratio
EF	energy factor
ENVSTD	Envelope System Performance Compliance Program
Et	thermal efficiency
F	Fahrenheit
ft	foot
h	hour
HC	heat capacity
HDD	heating degree-day
HDD65	heating degree-days base 65°F
h·ft ² ·°F/Btu	hour per square foot per degree Fahrenheit per British thermal unit HIDhigh-intensity discharge
hp	horsepower
HSPF	heating seasonal performance factor
HVAC	heating, ventilating, and air conditioning
IESNA	Illuminating Engineering Society of North America
in.	inch
I-P	inch-pound
IPLV	integrated part-load value
K	kelvin
kVA	kilovolt-ampere
lin	linear
lin ft	linear foot
LPD	lighting power density
MICA	Midwest Insulation Contractors Association
NAECA	U.S. National Appliance Energy Conservation Act of 1987
NFPA	National Fire Protection Association
NFRC	National Fenestration Rating Council
NPLV	nonstandard part-load value
PF	projection factor
PF PTAC	projection factor packaged terminal air conditioner
	• •
PTAC	packaged terminal air conditioner
PTAC PTHP	packaged terminal air conditioner packaged terminal heat pump
PTAC PTHP	packaged terminal air conditioner packaged terminal heat pump R-value (thermal resistance) thermal resistance of a material or construction
PTAC PTHP R R _c	packaged terminal air conditioner packaged terminal heat pump R-value (thermal resistance) thermal resistance of a material or construction from surface to surface total thermal resistance of a material or
PTAC PTHP R R_c R_u	packaged terminal air conditioner packaged terminal heat pump R-value (thermal resistance) thermal resistance of a material or construction from surface to surface total thermal resistance of a material or construction including air film resistances

SEER seasonal energy efficiency ratio **SHGC** solar heat gain coefficient SLstandby loss **SMACNA** Sheet Metal and Air Conditioning Contractors' National Association T_{db} dry-bulb temperature wet-bulb temperature T_{wb} UL Underwriters Laboratories Inc. VAV variable-air-volume **VLT** visible light transmittance W watt W/ft^2 watts per square foot Wh watt-hour

4. ADMINISTRATION AND ENFORCEMENT

4.1 General

4.1.1 Scope

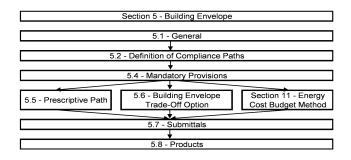
- **4.1.1.1 New Buildings.** New buildings shall comply with the standard as described in Section 4.2.
- **4.1.1.2** Additions to Existing Buildings. An extension or increase in the floor area or height of a building outside of the *existing building* envelope shall be considered *additions* to *existing buildings* and shall comply with the standard as described in Section 4.2.
- **4.1.1.3 Alterations of Existing Buildings.** *Alterations* of *existing buildings* shall comply with the standard as described in Section 4.2.
- 4.1.1.4 Replacement of Portions of Existing Buildings. Portions of a building envelope, heating, ventilating, airconditioning, service water heating, power, lighting, and other systems and equipment that are being replaced shall be considered as alterations of existing buildings and shall comply with the standard as described in Section 4.2.
- **4.1.1.5 Changes in Space Conditioning.** Whenever *unconditioned* or *semiheated* spaces in a building are converted to *conditioned spaces*, such *conditioned spaces* shall be brought into compliance with all the applicable requirements of this standard that would apply to the building envelope, heating, ventilating, air-conditioning, service water heating, power, lighting, and other systems and equipment of the space as if the building were new.
- **4.1.2 Administrative Requirements.** Administrative requirements relating to permit requirements, enforcement by the *authority having jurisdiction*, locally adopted energy standards, interpretations, claims of exemption, and rights of appeal are specified by the *authority having jurisdiction*.
- **4.1.3 Alternative Materials, Methods of Construction, or Design.** The provisions of this standard are not intended to prevent the use of any material, method of construction, design, equipment, or building system not specifically prescribed herein.

- **4.1.4 Validity.** If any term, part, provision, section, paragraph, subdivision, table, chart, or referenced standard of this standard shall be held unconstitutional, invalid, or ineffective, in whole or in part, such determination shall not be deemed to invalidate any remaining term, part, provision, section, paragraph, subdivision, table, chart, or referenced standard of this standard.
- **4.1.5 Other Laws.** The provisions of this standard shall not be deemed to nullify any provisions of local, state, or federal law. Where there is a conflict between a requirement of this standard and such other law affecting construction of the building, precedence shall be determined by the *authority having jurisdiction*.
- **4.1.6 Referenced Standards.** The standards referenced in this standard and listed in Section 12 shall be considered part of the requirements of this standard to the prescribed extent of such reference. Where differences occur between the provision of this standard and referenced standards, the provisions of this standard shall apply. Informative references are cited to acknowledge sources and are not part of this standard. They are identified in Informative Appendix E.
- **4.1.7 Normative Appendices.** The normative appendices to this standard are considered to be integral parts of the mandatory requirements of this standard, which, for reasons of convenience, are placed apart from all other normative elements.
- **4.1.8 Informative Appendices.** The informative appendices to this standard and informative notes located within this standard contain additional information and are not mandatory or part of this standard.

4.2 Compliance

4.2.1 Compliance Paths

- **4.2.1.1 New Buildings.** New Buildings shall comply with either the provisions of Sections 5, 6, 7, 8, 9, and 10 or Section 11.
- **4.2.1.2 Additions to Existing Buildings.** *Additions* to *existing buildings* shall comply with either the provisions of Sections 5, 6, 7, 8, 9, and 10 or Section 11.
- Exceptions: When an addition to an *existing building* cannot comply by itself, trade-offs will be allowed by modification to one or more of the existing components of the *existing building*. Modeling of the modified components of the *existing building* and addition shall employ the procedures of Section 11; the addition shall not increase the energy consumption of the *existing building* plus the addition beyond the energy that would be consumed by the *existing building* plus the addition alone did comply.
- **4.2.1.3** Alterations of Existing Buildings. Alterations of existing buildings shall comply with the provisions of Sections 5, 6, 7, 8, 9, and 10, provided, however, that nothing in this standard shall require compliance with any provision of this standard if such compliance will result in the increase of energy consumption of the building.


Exceptions:

- a. A building that has been specifically designated as historically significant by the *adopting authority* or is listed in The National Register of Historic Places or has been determined to be eligible for listing by the US Secretary of the Interior need not comply with these requirements.
- b. Where one or more components of an *existing build-ing* or portions thereof are being replaced, the annual energy consumption of the comprehensive design shall not be greater than the annual energy consumption of a substantially identical design, using the same energy types, in which the applicable requirements of Sections 5, 6, 7, 8, 9, and 10, as provided in Section 4.2.1.3, and such compliance is verified by a *design professional*, by the use of any calculation methods acceptable to the *authority having jurisdiction*.

4.2.2 Compliance Documentation

- **4.2.2.1 Construction Details.** Compliance documents shall show all the pertinent data and features of the building, equipment, and systems in sufficient detail to permit a determination of compliance by the *building official* and to indicate compliance with the requirements of this standard.
- **4.2.2.2 Supplemental Information.** Supplemental information necessary to verify compliance with this standard, such as calculations, worksheets, compliance forms, vendor literature, or other data, shall be made available when required by the *building official*.
- **4.2.2.3 Manuals.** Operating and maintenance information shall be provided to the building owner. This information shall include, but not be limited to, the information specified in Sections 6.7.2.2 and 8.7.2.
- **4.2.3** Labeling of Material and Equipment. Materials and equipment shall be labeled in a manner that will allow for a determination of their compliance with the applicable provisions of this standard.
- **4.2.4 Inspections.** All building construction, *additions*, or *alterations* subject to the provisions of this standard shall be subject to inspection by the *building official*, and all such work shall remain accessible and exposed for inspection purposes until approved in accordance with the procedures specified by the *building official*. Items for inspection include at least the following:
- wall insulation after the insulation and vapor retarder are in place but before concealment
- roof/ceiling insulation after roof/insulation is in place but before concealment
- c. slab/foundation wall after slab/foundation insulation is in place but before concealment
- d. fenestration after all glazing materials are in place
- e. mechanical systems and equipment and insulation after installation but before concealment
- f. electrical equipment and systems after installation but before concealment

5. BUILDING ENVELOPE

5.1 General

5.1.1 Scope. Section 5 specifies requirements for the *building envelope*.

5.1.2 Space-Conditioning Categories

- **5.1.2.1** Separate *exterior building envelope* requirements are specified for each of three categories of conditioned space: (a) *nonresidential conditioned* space, (b) *residential conditioned* space, and (c) *semiheated* space.
- **5.1.2.2** *Spaces* shall be assumed to be *conditioned spaces* and shall comply with the requirements for *conditioned space* at the time of construction, regardless of whether mechanical or electrical equipment is included in the building permit application or installed at that time.
- **5.1.2.3** In climate zones 3 through 8, a space may be designated as either *semiheated* or *unconditioned* only if approved by the *building official*.
- **5.1.3 Envelope Alterations.** Alterations to the building envelope shall comply with the requirements of Section 5 for insulation, air leakage, and *fenestration* applicable to those specific portions of the building that are being altered.

Exceptions: The following *alterations* need not comply with these requirements, provided such *alterations* will not increase the energy usage of the building:

- a. installation of storm windows over existing glazing
- b. replacement of glazing in existing sash and frame provided the *U-factor* and *SHGC* will be equal to or lower than before the glass replacement
- alterations to roof/ceiling, wall, or floor cavities, which are insulated to full depth with insulation having a minimum nominal value of R-3.0/in.
- d. alterations to walls and floors, where the existing structure is without framing cavities and no new framing cavities are created
- e. replacement of a roof membrane where either the roof sheathing or roof insulation is not exposed or, if there is existing roof insulation, below the roof deck
- f. replacement of existing doors that separate conditioned space from the exterior shall not require the installation of a vestibule or revolving door, provided, however, that an existing vestibule that separate

- rates a conditioned space from the exterior shall not be removed
- g. replacement of existing fenestration, provided, however, that the area of the replacement fenestration does not exceed 25% of the total fenestration area of an *existing building* and that the *U-factor* and *SHGC* will be equal to or lower than before the fenestration replacement
- **5.1.4 Climate.** Determine the climate zone for the location. For US locations, follow the procedure in Section 5.1.4.1. For international locations, follow the procedure in Section 5.1.4.2.
- **5.1.4.1 United States Locations.** Use Figure B-1 or Table B-1 in Appendix B to determine the required climate zone.

Exception: If there are recorded historical climatic data available for a construction site, they may be used to determine compliance if approved by the *building official*.

5.1.4.2 International Locations. For locations in Canada that are listed in Table B-2 in Appendix B, use this table to determine the required climate zone number and, when a climate zone letter is also required, use Table B-4 and the Major Climate Type Definitions in Appendix B to determine the letter (A, B, or C). For locations in other international countries that are listed in Table B-3, use this table to determine the required climate zone number and, when a climate zone letter is also required, use Table B-4 and the Major Climate Type Definitions in Appendix B to determine the letter (A, B, or C). For all international locations that are not listed either in Table B-2 or B-3, use Table B-4 and the Major Climate Type Definitions in Appendix B to determine both the climate zone letter and number.

5.2 Compliance Paths

- **5.2.1 Compliance.** For the appropriate climate, *space-conditioning category*, and *class of construction*, the *building envelope* shall comply with Section 5.1, General; Section 5.4, Mandatory Provisions; Section 5.7, Submittals; and Section 5.8, Product Information and Installation Requirements; and either
- a. 5.5, Prescriptive Building Envelope Option, provided that
 - 1. the *vertical fenestration area* does not exceed 40% of the *gross wall area* for each *space-conditioning cate-gory* and
 - 2. the *skylight fenestration area* does not exceed 5% of the *gross roof area* for each *space-conditioning cate-gory*, or
- b. 5.6, Building Envelope Trade-Off Option.
- **5.2.2** Projects using the Energy Cost Budget Method (Section 11 of this standard) must comply with Section 5.4, the mandatory provisions of this section, as a portion of that compliance path.

5.3 Simplified Building (Not Used)

5.4 Mandatory Provisions

- **5.4.1 Insulation.** Where insulation is required in Section 5.5 or 5.6, it shall comply with the requirements found in Sections 5.8.1.1 through 5.8.1.9.
- **5.4.2 Fenestration and Doors.** Procedures for determining *fenestration* and door performance are described in Section 5.8.2. Product samples used for determining *fenestration* performance shall be production line units or representative of units purchased by the consumer or contractor.

5.4.3 Air Leakage

- **5.4.3.1 Building Envelope Sealing.** The following areas of the *building envelope* shall be sealed, caulked, gasketed, or weather-stripped to minimize air leakage:
- a. joints around fenestration and door frames
- b. junctions between *walls* and foundations, between *walls* at building corners, between *walls* and structural *floors* or *roofs*, and between *walls* and *roof* or *wall* panels
- c. openings at penetrations of utility services through *roofs*, *walls*, and *floors*
- d. site-built *fenestration* and *doors*
- e. building assemblies used as ducts or plenums
- f. joints, seams, and penetrations of vapor retarders
- g. all other openings in the building envelope
- **5.4.3.2 Fenestration and Doors.** Air leakage for *fenestration* and *doors* shall be determined in accordance with NFRC 400. Air leakage shall be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the National Fenestration Rating Council, and shall be *labeled* and certified by the *manufacturer*. Air leakage shall not exceed 1.0 cfm/ft² for glazed swinging entrance doors and for revolving doors and 0.4 cfm/ft² for all other products.

Exceptions:

- a. Field-fabricated fenestration and doors.
- b. For garage *doors*, air leakage determined by test at standard test conditions in accordance with ANSI/ DASMA 105 shall be an acceptable alternate for compliance with air leakage requirements.
- **5.4.3.3 Loading Dock Weatherseals.** In climate zones 4 through 8, cargo *doors* and loading dock *doors* shall be equipped with weatherseals to restrict *infiltration* when vehicles are parked in the doorway.
- **5.4.3.4 Vestibules.** Building entrances that separate *conditioned space* from the exterior shall be protected with an enclosed vestibule, with all *doors* opening into and out of the vestibule equipped with self-closing devices. Vestibules shall be designed so that in passing through the vestibule it is not necessary for the interior and exterior *doors* to open at the same time. Interior and exterior *doors* shall have a minimum distance between them of not less than 7 ft when in the closed position. The exterior envelope of conditioned vestibules shall comply with the requirements for a conditioned space. The

interior and exterior envelope of unconditioned vestibules shall comply with the requirements for a semiheated space.

Exceptions:

- a. Building entrances with revolving doors.
- b. *Doors* not intended to be used as a *building entrance*.
- c. Doors opening directly from a dwelling unit.
- d. *Building entrances* in buildings located in climate zone 1 or 2.
- e. *Building entrances* in buildings located in climate zone 3 or 4 that are less than four stories above grade and less than 10,000 ft² in area.
- f. Building entrances in buildings located in climate zone 5, 6, 7, or 8 that are less than 1000 ft² in area.
- g. *Doors* that open directly from a *space* that is less than 3000 ft² in area and is separate from the *building entrance*.

5.5 Prescriptive Building Envelope Option

- **5.5.1** For a *conditioned space*, the *exterior building envelope* shall comply with either the "nonresidential" or "residential" requirements in Tables 5.5-1 through 5.5-8 for the appropriate climate.
- **5.5.2** If a building contains any *semiheated space* or *unconditioned space*, then the *semi-exterior building envelope* shall comply with the requirements for *semiheated space* in Tables 5.5-1 through 5.5-8 for the appropriate climate. (See Figure 5.5.)
- **5.5.3 Opaque Areas.** For all opaque surfaces except doors, compliance shall be demonstrated by one of the following two methods:
- Minimum rated R-values of insulation for the thermal resistance of the added insulation in framing cavities and continuous insulation only. Specifications listed in Normative Appendix A for each class of construction shall be used to determine compliance.
- Maximum *U-factor, C-factor,* or *F-factor* for the entire assembly. The values for typical construction assemblies listed in Normative Appendix A shall be used to determine compliance.

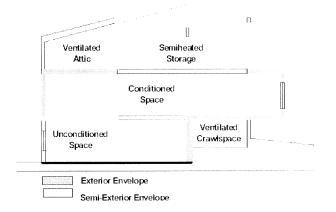


Figure 5.5 Exterior and semi-exterior building envelope.

TABLE 5.5-1 Building Envelope Requirements for Climate Zone 1 (A, B)*

IABLE 5.5-	Building	Building Envelope Requirements for Climate Zone 1 (A, B)"						
	Non	residential	Re	sidential	Se	emiheated		
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value		
Roofs								
Insulation Entirely above Deck	U-0.063	R-15.0 c.i.	U-0.048	R-20.0 c.i.	U-0.218	R-3.8 ci		
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-1.280	NR		
Attic and Other	U-0.034	R-30.0	U-0.027	R-38.0	U-0.081	R-13.0		
Walls, Above-Grade								
Mass	U-0.580	NR	U-0.151 ^a	R-5.7 c.i. ^a	U-0.580	NR		
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-1.180	NR		
Steel-Framed	U-0.124	R-13.0	U-0.124	R-13.0	U-0.352	NR		
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.292	NR		
Walls, Below-Grade								
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR		
Floors								
Mass	U-0.322	NR	U-0.322	NR	U-0.322	NR		
Steel-Joist	U-0.350	NR	U-0.350	NR	U-0.350	NR		
Wood-Framed and Other	U-0.282	NR	U-0.282	NR	U-0.282	NR		
Slab-On-Grade Floors								
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR		
Heated	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.		
Opaque Doors								
Swinging	U-0.700		U-0.700		U-0.700			
Nonswinging	U-1.450		U-1.450		U-1.450			
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC		
Vertical Glazing, 0%–40% of Wall								
Nonmetal framing (all) ^b	U-1.20		U-1.20		U-1.20			
Metal framing (curtainwall/storefront) ^c	U-1.20	SHGC-0.25 all	U-1.20	SHGC-0.25 all	U-1.20	SHGC-NR all		
Metal framing (entrance door) ^c	U-1.20		U-1.20		U-1.20			
Metal framing (all other) ^c	U-1.20		U-1.20		U-1.20			
Skylight with Curb, Glass, % of Roof								
0%–2.0%	$\mathrm{U_{all}^{-1.98}}$	$^{\mathrm{SHGC}}$ all $^{-0.36}$	$\mathrm{U_{all}^{-1.98}}$	SHGC _{all} -0.19	$\mathrm{U_{all}^{-1.98}}$	SHGC _{all} -NR		
2.1%-5.0%	Uall ^{-1.98}	SHGC _{all} -0.19	Uall ^{-1.98}	SHGC _{all} -0.16	Uall ^{-1.98}	SHGC _{all} -NR		
Skylight with Curb, Plastic, % of Roof		<u> </u>						
0%-2.0%	$\mathrm{U_{all}^{-1.90}}$	$^{\mathrm{SHGC}}$ all $^{-0.34}$	$\mathrm{U_{all}^{-1.90}}$	SHGC _{all} -0.27	$\mathrm{U_{all}^{-1.90}}$	SHGC _{all} -NR		
2.1%-5.0%	Uall ^{-1.90}	SHGC _{all} -0.27	Uall ^{-1.90}	SHGC _{all} -0.27	Uall ^{-1.90}	SHGC _{all} -NR		
Skylight without Curb, All, % of Roof				*				
	$U_{all}^{-1.36}$	$^{\mathrm{SHGC}}$ all $^{-0.36}$	II1 36	SHGC _{all} -0.19	$\mathrm{U_{all}^{-1.36}}$	SHGC _{all} -NR		
0%-2.0%	all 1.50	all olso	$^{\mathrm{U}}\mathrm{all}^{-1.36}$	all	all	all		

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

aException to Section A3.1.3.1 applies.

bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-2 Building Envelope Requirements for Climate Zone 2 (A, B)*

	Non	residential	Residential		Semiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.218	R-3.8 c.i.
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.167	R-6.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.081	R-13.0
Walls, Above-Grade						
Mass	U-0.151 ^a	R-5.7 c.i.a	U-0.123	R-7.6 c.i.	U-0.580	NR
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-0.184	R-6.0
Steel-Framed	U-0.124	R-13.0	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.089	R-13.0
Walls, Below-Grade						
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR
Floors						
Mass	U-0.107	R-6.3 c.i.	U-0.087	R-8.3 c.i.	U-0.322	NR
Steel-Joist	U-0.052	R-19.0	U-0.052	R-19.0	U-0.069	R-13.0
Wood-Framed and Other	U-0.051	R-19.0	U-0.033	R-30.0	U-0.066	R-13.0
Slab-On-Grade Floors						
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR
Heated	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors						
Swinging	U-0.700		U-0.700		U-0.700	
Nonswinging	U-1.450		U-0.500		U-1.450	
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC
Vertical Glazing, 0%–40% of Wall						
Nonmetal framing (all) ^b	U-0.75		U-0.75		U-1.20	
Metal framing (curtainwall/storefront) ^c	U-0.70	SHGC-0.25 all	U-0.70	SHGC-0.25 all	U-1.20	SHGC-NR all
Metal framing (entrance door) ^c	U-1.10		U-1.10		U-1.20	
Metal framing (all other) ^c	U-0.75		U-0.75		U-1.20	
Skylight with Curb, Glass, % of Roof						
0%-2.0%	$\mathrm{U_{all}^{-1.98}}$	${ m SHGC}_{ m all}$ $^{-0.36}$	$\mathrm{U_{all}^{-1.98}}$	$^{\mathrm{SHGC}}$ all $^{-0.19}$	$\mathrm{U_{all}^{-1.98}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-1.98}	SHGC _{all} -0.19	Uall ^{-1.98}	SHGC _{all} -0.19	Uall ^{-1.98}	SHGC _{all} -NR
Skylight with Curb, Plastic, % of Roof						
0%-2.0%	$\mathrm{U_{all}^{-1.90}}$	${ m SHGC}_{ m all}$ $^{-0.39}$	$\mathrm{U_{all}^{-1.90}}$	$^{\mathrm{SHGC}}$ all $^{-0.27}$	$\mathrm{U_{all}^{-1.90}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-1.90}	SHGC _{all} -0.34	Uall ^{-1.90}	SHGC _{all} -0.27	Uall ^{-1.90}	SHGC _{all} -NR
Skylight without Curb, All, % of Roof						
0%–2.0%	$\mathrm{U_{all}^{-1.36}}$	${ m SHGC}_{ m all}^{-0.36}$	$\mathrm{U_{all}^{-1.36}}$	SHGC _{all} -0.19	$\mathrm{U_{all}^{-1.36}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-1.36}	SHGC _{all} -0.19	Uall ^{-1.36}	SHGC _{all} -0.19	Uall ^{-1.36}	SHGC _{all} -NR

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

^aException to Section A3.1.3.1 applies.

^bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

^cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-3 Building Envelope Requirements for Climate Zone 3 (A, B, C)*

IADLL 3.3-3	Dullullig L	building Envelope nequirements for Chinate 20the 3 (A, B, C)						
	No	Nonresidential		esidential	Semiheated			
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value		
Roofs								
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.173	R-5.0 c.i.		
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0		
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0		
Walls, Above-Grade								
Mass	U-0.123	R-7.6 c.i.	U-0.104	R-9.5 c.i.	U-0.580	NR		
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-0.184	R-6.0		
Steel-Framed	U-0.084	R-13.0 + R-3.8 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0		
Wood-Framed and Other	U-0.089	R-13.0	U-0.089	R-13.0	U-0.089	R-13.0		
Walls, Below-Grade								
Below-Grade Wall	C-1.140	NR	C-1.140	NR	C-1.140	NR		
Floors								
Mass	U-0.107	R-6.3 c.i.	U-0.087	R-8.3 c.i.	U-0.322	NR		
Steel-Joist	U-0.052	R-19.0	U-0.052	R-19.0	U-0.069	R-13.0		
Wood-Framed and Other	U-0.051	R-19.0	U-0.033	R-30.0	U-0.066	R-13.0		
Slab-On-Grade Floors								
Unheated	F-0.730	NR	F-0.730	NR	F-0.730	NR		
Heated	F-0.900	R-10 for 24 in.	F-0.900	R-10 for 24 in.	F-1.020	R-7.5 for 12 in.		
Opaque Doors								
Swinging	U-0.700		U-0.700		U-0.700			
Nonswinging	U-1.450		U-0.500		U-1.450			
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC		
Vertical Glazing, 0%–40% of Wall								
Nonmetal framing (all) ^b	U-0.65		U-0.65		U-1.20			
Metal framing (curtainwall/storefront) ^c	U-0.60	SHGC-0.25 all	U-0.60	SHGC-0.25 all	U-1.20	SHGC-NR all		
Metal framing (entrance door) ^c	U-0.90		U-0.90	2	U-1.20			
Metal framing (all other) ^c	U-0.65		U-0.65		U-1.20			
Skylight with Curb, Glass, % of Roof								
0%–2.0%	$\mathrm{U_{all}^{-1.17}}$	${ m SHGC}_{ m all}^{-0.39}$	$\mathrm{U_{all}^{-1.17}}$	$^{\mathrm{SHGC}}$ all $^{-0.36}$	$\mathrm{U_{all}^{-1.98}}$	$^{\mathrm{SHGC}}$ all $^{-\mathrm{NR}}$		
2.1%-5.0%	U _{all} -1.17	SHGC _{all} -0.19	U _{all} -1.17	SHGC _{all} -0.19	U _{all} -1.98	SHGC _{all} -NR		
Skylight with Curb, Plastic, % of Roof		*						
0%–2.0%	$\mathrm{U_{all}^{-1.30}}$	$^{\mathrm{SHGC}}$ all $^{-0.65}$	$\mathrm{U_{all}^{-1.30}}$	${ m SHGC}_{ m all}^{-0.27}$	$\mathrm{U_{all}^{-1.90}}$	SHGC _{all} -NR		
2.1%-5.0%	Uall ^{-1.30}	SHGC _{all} -0.34	U _{all} -1.30	SHGC _{all} -0.27	Uall ^{-1.90}	SHGC _{all} -NR		
Skylight without Curb, All, % of Roof		<u> </u>						
0%–2.0%	U_{all} -0.69	${ m SHGC}_{ m all}$ –0.39	$\mathrm{U_{all}^{-0.69}}$	SHGC _{all} -0.36	$\mathrm{U_{all}^{-1.36}}$	SHGC _{all} –NR		
2.1%-5.0%	U _{all} -0.69	SHGC _{all} -0.19	Uall ^{-0.69}	SHGC _{all} -0.19	Uall ^{-1.36}	SHGC _{all} -NR		

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-4 Building Envelope Requirements for Climate Zone 4 (A, B, C)*

IADLE 0.0 T	building Envelope nequirements for Climate 20the 4 (A, B, C)						
	No	nresidential	Re	esidential	Se	emiheated	
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	
Roofs							
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.173	R-5.0 c.i.	
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0	
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0	
Walls, Above-Grade							
Mass	U-0.104	R-9.5 c.i.	U-0.090	R-11.4 c.i.	U-0.580	NR	
Metal Building	U-0.113	R-13.0	U-0.113	R-13.0	U-0.134	R-10.0	
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0	
Wood-Framed and Other	U-0.089	R-13.0	U-0.064	R-13.0 + R-3.8 c.i.	U-0.089	R-13.0	
Walls, Below-Grade							
Below-Grade Wall	C-1.140	NR	C-0.119	R-7.5 c.i.	C-1.140	NR	
Floors		<u> </u>				<u> </u>	
Mass	U-0.087	R-8.3 c.i.	U-0.074	R-10.4 c.i.	U-0.137	R-4.2 c.i.	
Steel-Joist	U-0.038	R-30.0	U-0.038	R-30.0	U-0.069	R-13.0	
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.066	R-13.0	
Slab-On-Grade Floors							
Unheated	F-0.730	NR	F-0.540	R-10 for 24 in.	F-0.730	NR	
Heated	F-0.860	R-15 for 24 in.	F-0.860	R-15 for 24in.	F-1.020	R-7.5 for 12 in.	
Opaque Doors							
Swinging	U-0.700		U-0.700		U-0.700		
Nonswinging	U-1.500		U-0.500		U-1.450		
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	
Vertical Glazing, 0%–40% of Wall							
Nonmetal framing (all) ^b	U-0.40		U-0.40		U-1.20		
Metal framing (curtainwall/storefront) ^c	U-0.50	SHGC-0.40 all	U-0.50	SHGC-0.40 all	U-1.20	SHGC-NR all	
Metal framing (entrance door) ^c	U-0.85		U-0.85	2	U-1.20	2	
Metal framing (all other) ^c	U-0.55		U-0.55		U-1.20		
Skylight with Curb, Glass, % of Roof							
0%–2.0%	$\mathrm{U_{all}^{-1.17}}$	$^{\mathrm{SHGC}}$ all $^{-0.49}$	$\mathrm{U_{all}^{-0.98}}$	SHGC _{all} -0.36	$\mathrm{U_{all}^{-1.98}}$	SHGC _{all} -NR	
2.1%-5.0%	Uall ^{-1.17}	SHGC _{all} -0.39	Uall ^{-0.98}	SHGC _{all} -0.19	U _{all} -1.98	SHGC _{all} -NR	
Skylight with Curb, Plastic, % of Roof						**	
0%-2.0%	$\mathrm{U_{all}^{-1.30}}$	$^{\mathrm{SHGC}}$ all $^{-0.65}$	$\mathrm{U_{all}^{-1.30}}$	${ m SHGC}_{ m all}^{-0.62}$	$\mathrm{U_{all}^{-1.90}}$	SHGC _{all} -NR	
2.1%-5.0%	Uall ^{-1.30}	SHGC _{all} -0.34	Uall ^{-1.30}	SHGC _{all} -0.27	U _{all} -1.90	SHGC _{all} -NR	
Skylight without Curb, All, % of Roof				W11	****		
0%–2.0%	Uall ^{-0.69}	$^{\mathrm{SHGC}}$ all $^{-0.49}$	$\mathrm{U_{all}^{-0.58}}$	SHGC _{all} -0.36	$\mathrm{U_{all}^{-1.36}}$	SHGC _{all} -NR	
2.1%-5.0%	Uall ^{-0.69}	SHGC _{all} -0.39	U _{all} -0.58	SHGC _{all} -0.19	U _{all} -1.36	SHGC _{all} -NR	

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-5 Building Envelope Requirements for Climate Zone 5 (A, B, C)*

	Nonresidential		Residential		Se	miheated
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.119	R-7.6 c.i.
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0
Walls, Above-Grade						
Mass	U-0.090	R-11.4 c.i.	U-0.080	R-13.3 c.i.	U-0.151 ^a	R-5.7 c.i.a
Metal Building	U-0.113	R-13.0	U-0.057	R-13.0 + R-13.0	U-0.123	R-11.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0
Wood-Framed and Other	U-0.064	R-13.0 + R-3.8 c.i.	U-0.051	R-13.0 + R-7.5 c.i.	U-0.089	R-13.0
Walls, Below-Grade						
Below-Grade Wall	C-0.119	R-7.5 c.i.	C-0.119	R-7.5 c.i.	C-1.140	NR
Floors						
Mass	U-0.074	R-10.4 c.i.	U-0.064	R-12.5 c.i.	U-0.137	R-4.2 c.i.
Steel-Joist	U-0.038	R-30.0	U-0.038	R-30.0	U-0.052	R-19.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.051	R-19.0
Slab-On-Grade Floors						
Unheated	F-0.730	NR	F-0.540	R-10 for 24 in.	F-0.730	NR
Heated	F-0.860	R-15 for 24 in.	F-0.860	R-15 for 24 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors						
Swinging	U-0.700		U-0.500		U-0.700	
Nonswinging	U-0.500		U-0.500		U-1.450	
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC
Vertical Glazing, 0%–40% of Wall						
Nonmetal framing (all) ^b	U-0.35		U-0.35		U-1.20	
Metal framing (curtainwall/storefront) ^c	U-0.45	SHGC-0.40 all	U-0.45	SHGC-0.40 all	U-1.20	SHGC-NR all
Metal framing (entrance door) ^c	U-0.80		U-0.80		U-1.20	
Metal framing (all other) ^c	U-0.55		U-0.55		U-1.20	
Skylight with Curb, Glass, % of Roof						
0%-2.0%	$\mathrm{U_{all}^{-1.17}}$	$^{\mathrm{SHGC}}$ all $^{-0.49}$	$\mathrm{U_{all}^{-1.17}}$	SHGC _{all} -0.49	$\mathrm{U_{all}^{-1.98}}$	SHGC _{all} -NR
2.1%-5.0%	$U_{all}^{-1.17}$	SHGC _{all} -0.39	$U_{all}^{-1.17}$	SHGC _{all} -0.39	Uall ^{-1.98}	SHGC _{all} -NR
Skylight with Curb, Plastic, % of Roof						
0%–2.0%	$\mathrm{U_{all}^{-1.10}}$	$^{\mathrm{SHGC}}$ all $^{-0.77}$	$\mathrm{U_{all}^{-1.10}}$	$^{\mathrm{SHGC}}$ all $^{-0.77}$	$\mathrm{U_{all}^{-1.90}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-1.10}	SHGC _{all} -0.62	Uall ^{-1.10}	SHGC _{all} -0.62	Uall ^{-1.90}	SHGC _{all} -NR
Skylight without Curb, All, % of Roof						
0%-2.0%	Uall ^{-0.69}	SHGC _{all} -0.49	Uall ^{-0.69}	SHGC _{all} -0.49	Uall ^{-1.36}	SHGC _{all} -NR
2.1%-5.0%	Uall ^{-0.69}	SHGC _{all} -0.39	Uall ^{-0.69}	SHGC _{all} -0.39	Uall ^{-1.36}	SHGC _{all} -NR

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

aException to Section A3.1.3.1 applies.

bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-6 Building Envelope Requirements for Climate Zone 6 (A, B)*

	Noi	residential	Re	esidential	Se	emiheated
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.093	R-10.0 c.i.
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.034	R-30.0
Walls, Above-Grade						
Mass	U-0.080	R-13.3 c.i.	U-0.071	R-15.2 c.i.	U-0.151 ^a	R-5.7 c.i. ^a
Metal Building	U-0.113	R-13.0	U-0.057	R-13.0 + R-13.0	U-0.113	R-13.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0
Wood-Framed and Other	U-0.051	R-13.0 + R-7.5 c.i.	U-0.051	R-13.0 + R-7.5 c.i.	U-0.089	R-13.0
Walls, Below-Grade						
Below-Grade Wall	C-0.119	R-7.5 c.i.	C-0.119	R-7.5 c.i.	C-1.140	NR
Floors						
Mass	U-0.064	R-12.5 c.i.	U-0.057	R-14.6 c.i.	U-0.137	R-4.2 c.i.
Steel-Joist	U-0.038	R-30.0	U-0.032	R-38.0	U-0.052	R-19.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U0051	R-19.0
Slab-On-Grade Floors						
Unheated	F-0.540	R-10 for 24 in.	F-0.520	R-15 for 24 in.	F-0.730	NR
Heated	F-0.860	R-15 for 24 in.	F-0.688	R-20 for 48 in.	F-1.020	R-7.5 for 12 in.
Opaque Doors						
Swinging	U-0.700		U-0.500		U-0.700	
Nonswinging	U-0.500		U-0.500		U-1.450	
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC
Vertical Glazing, 0%–40% of Wall						
Nonmetal framing (all) ^b	U-0.35		U-0.35		U-0.65	
Metal framing (curtainwall/storefront) ^c	U-0.45	SHGC-0.40 all	U-0.45	SHGC-0.40 all	U-0.60	SHGC-NR all
Metal framing (entrance door) ^c	U-0.80		U-0.80		U-0.90	
Metal framing (all other) ^c	U-0.55		U-0.55		U-0.65	
Skylight with Curb, Glass, % of Roof						
0%–2.0%	$\mathrm{U_{all}^{-1.17}}$	$^{\mathrm{SHGC}}$ all $^{-0.49}$	$\mathrm{U_{all}^{-0.98}}$	SHGC _{all} -0.46	$\mathrm{U_{all}^{-1.98}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-1.17}	SHGC _{all} -0.49	Uall ^{-0.98}	SHGC _{all} -0.36	Uall ^{-1.98}	SHGC _{all} -NR
Skylight with Curb, Plastic, % of Roof		<u> </u>				
0%–2.0%	$\mathrm{U_{all}^{-0.87}}$	$^{\mathrm{SHGC}}$ all $^{-0.71}$	$\mathrm{U_{all}^{-0.74}}$	SHGC _{all} -0.65	$\mathrm{U_{all}^{-1.90}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-0.87}	SHGC _{all} -0.58	Uall ^{-0.74}	SHGC _{all} -0.55	Uall ^{-1.90}	SHGC _{all} -NR
Skylight without Curb, All, % of Roof						
0%–2.0%	Uall ^{-0.69}	$^{\mathrm{SHGC}}$ all $^{-0.49}$	$\mathrm{U_{all}^{-0.58}}$	SHGC _{all} -0.49	$U_{all}^{-1.36}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-0.69}	SHGC _{all} -0.49	Uall ^{-0.58}	SHGC _{all} -0.39	Uall ^{-1.36}	SHGC _{all} -NR

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

^aException to Section A3.1.3.1 applies.

^bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

^cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-7 Building Envelope Requirements for Climate Zone 7*

	Nor	residential	Re	esidential	Se	miheated
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.093	R-10.0 c.i.
Metal Building	U-0.065	R-19.0	U-0.065	R-19.0	U-0.097	R-10.0
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.034	R-30.0
Walls, Above-Grade						
Mass	U-0.071	R-15.2 c.i.	U-0.071	R-15.2 c.i.	U-0.123	R-7.6 c.i.
Metal Building	U-0.057	R-13.0 + R-13.0	U-0.057	R-13.0 + R-13.0	U-0.113	R-13.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.042	R-13.0 + R-15.6 c.i.	U-0.124	R-13.0
Wood-Framed and Other	U-0.051	R-13.0 + R-7.5 c.i.	U-0.051	R-13.0 + R-7.5 c.i.	U-0.089	R-13.0
Walls, Below-Grade						
Below-Grade Wall	C-0.119	R-7.5 c.i.	C-0.092	R-10.0 c.i.	C-1.140	NR
Floors						
Mass	U-0.064	R-12.5 c.i.	U-0.051	R-16.7 c.i.	U-0.107	R-6.3 c.i.
Steel-Joist	U-0.038	R-30.0	U-0.032	R-38.0	U-0.052	R-19.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.051	R-19.0
Slab-On-Grade Floors						
Unheated	F-0.520	R-15 for 24 in.	F-0.520	R-15 for 24 in.	F-0.730	NR
Heated	F-0.843	R-20 for 24in.	F-0.688	R-20 for 48 in.	F-0.900	R-10 for 24 in.
Opaque Doors						
Swinging	U-0.500		U-0.500		U-0.700	
Nonswinging	U-0.500		U-0.500		U-1.450	
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC
Vertical Glazing, 0%–40% of Wall						
Nonmetal framing (all) ^b	U-0.35		U-0.35		U-0.65	
Metal framing (curtainwall/storefront) ^c	U-0.40	SHGC-0.45 all	U-0.40	SHGC-NR all	U-0.60	SHGC-NR all
Metal framing (entrance door) ^c	U-0.80		U-0.80		U-0.90	
Metal framing (all other) ^c	U-0.45		U-0.45		U-0.65	
Skylight with Curb, Glass, % of Roof						
0%–2.0%	$\mathrm{U_{all}^{-1.17}}$	$^{\mathrm{SHGC}}$ all $^{-0.68}$	$\mathrm{U_{all}^{-1.17}}$	SHGC _{all} -0.64	$\mathrm{U_{all}^{-1.98}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-1.17}	SHGC _{all} -0.64	Uall ^{-1.17}	SHGC _{all} -0.64	Uall ^{-1.98}	SHGC _{all} -NR
Skylight with Curb, Plastic, % of Roof						
0%-2.0%	$^{\mathrm{U}}\mathrm{all}^{-0.87}$	$^{\mathrm{SHGC}}$ all $^{-0.77}$	$\mathrm{U_{all}^{-0.61}}$	SHGC _{all} -0.77	$\mathrm{U_{all}^{-1.90}}$	SHGC _{all} -NR
2.1%-5.0%	Uall ^{-0.87}	SHGC _{all} -0.71	Uall ^{-0.61}	SHGC _{all} -0.77	Uall ^{-1.90}	SHGC _{all} -NR
Skylight without Curb, All, % of Roof					****	
0%-2.0%	$\mathrm{U_{all}^{-0.69}}$	$^{\mathrm{SHGC}}$ all $^{-0.68}$	$^{\mathrm{U}}\mathrm{all}^{-0.69}$	SHGC _{all} -0.64	$\mathrm{U_{all}^{-1.36}}$	SHGC _{all} -NR
0/0-2.0/0						

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding.

cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

TABLE 5.5-8 Building Envelope Requirements for Climate Zone 8*

	Noi	residential	Residential		S	emiheated
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value
Roofs						
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.063	R-15.0 c.i.
Metal Building	U-0.049	R-13.0 + R-19.0	U-0.049	R-13.0 + R-19.0	U-0.072	R-16.0
Attic and Other	U-0.021	R-49.0	U-0.021	R-49.0	U-0.034	R-30.0
Walls, Above-Grade						
Mass	U-0.071	R-15.2 c.i.	U-0.052	R-25.0 c.i.	U-0.104	R-9.5 c.i.
Metal Building	U-0.057	R-13.0 + R-13.0	U-0.057	R-13.0 + R-13.0	U-0.113	R-13.0
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.037	R-13.0 + R-18.8 c.i.	U-0.084	R-13.0 + R-3.8 c.i.
Wood-Framed and Other	U-0.036	R-13.0 + R-15.6 c.i.	U-0.036	R-13.0 + R-15.6 c.i.	U-0.089	R-13.0
Walls, Below-Grade						
Below-Grade Wall	C-0.119	R-7.5 c.i.	C-0.075	R-12.5 c.i.	C-1.140	NR
Floors						
Mass	U-0.057	R-14.6 c.i.	U-0.051	R-16.7 c.i.	U-0.087	R-8.3 c.i.
Steel-Joist	U-0.032	R-38.0	U-0.032	R-38.0	U-0.052	R-19.0
Wood-Framed and Other	U-0.033	R-30.0	U-0.033	R-30.0	U-0.033	R-30.0
Slab-On-Grade Floors						
Unheated	F-0.520	R-15 for 24 in.	F-0.510	R-20 for 24 in.	F-0.730	NR
Heated	F-0.688	R-20 for 48 in.	F-0.688	R-20 for 48 in.	F-0.900	R-10.0 for 24 in.
Opaque Doors						
Swinging	U-0.500		U-0.500		U-0.700	
Nonswinging	U-0.500		U-0.500		U-0.500	
Fenestration	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC	Assembly Max. U	Assembly Max. SHGC
Vertical Glazing, 0%–40% of Wall						
Nonmetal framing (all) ^b	U-0.35		U-0.35		U-0.65	
Metal framing (curtainwall/storefront) ^c	U-0.40	SHGC-0.45 all	U-0.40	SHGC-NR all	U-0.60	SHGC-NR all
Metal framing (entrance door) ^c	U-0.80	51100 01.0 411	U-0.80		U-0.90	STIGOT WIT
Metal framing (all other) ^c	U-0.45		U-0.45		U-0.65	
Skylight with Curb, Glass, % of Roof			2 3.15			
0%–2.0%	$\mathrm{U_{all}^{-0.98}}$	shgc _{all} -NR	$\mathrm{U_{all}^{-0.98}}$	shgc _{all} -nr	$\mathrm{U_{all}^{-1.30}}$	shgc _{all} -nr
2.1%-5.0%	Uall ^{-0.98}	SHGC _{all} -NR	Uall ^{-0.98}	SHGC _{all} -NR	Uall ^{-1.30}	SHGC _{all} -NR
Skylight with Curb, Plastic, % of Roof		***				
0%-2.0%	Uall ^{-0.61}	SHGC _{all} -NR	$\mathrm{U_{all}^{-0.61}}$	shgc _{all} -nr	$\mathrm{U_{all}^{-1.10}}$	SHGC _{all} -NR
2.1%-5.0%	Uall ^{-0.61}	SHGC _{all} -NR	Uall ^{-0.61}	SHGC _{all} -NR	U _{all} -1.10	SHGC _{all} -NR
Skylight without Curb, All, % of Roof	****	W11	w	411	W-1	411
0%–2.0%	Uall ^{-0.58}	SHGC _{all} -NR	$\mathrm{U_{all}^{-0.58}}$	shgc _{all} -nr	Uall ^{-0.81}	SHGC _{all} -NR
2.1%-5.0%	Uall ^{-0.58}	SHGC _{all} -NR	Uall ^{-0.58}	SHGC _{all} -NR	Uall ^{-0.81}	SHGC _{all} -NR

^{*}The following definitions apply: c.i. = continuous insulation (see Section 3.2), NR = no (insulation) requirement.

^bNonmetal framing includes framing materials other than metal with or without metal reinforcing or cladding. ^cMetal framing includes metal framing with or without thermal break. The "all other" subcategory includes operable windows, fixed windows, and non-entrance doors.

Exceptions to Section 5.5.3:

- For assemblies significantly different from those in Appendix A, calculations shall be performed in accordance with the procedures required in Appendix A.
- b. For multiple assemblies within a single *class of construction* for a single *space-conditioning category*, compliance shall be shown for either (1) the most restrictive requirement or (2) an area-weighted average *U-factor*, *C-factor*, or *F-factor*.
- **5.5.3.1 Roof Insulation.** All *roofs* shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8 or shall comply with the insulation values specified in Section 5.5.3.1.1 and Table 5.5.3.1. Skylight curbs shall be insulated to the level of roofs with insulation entirely above deck or R-5, whichever is less.
- **5.5.3.1.1 High Albedo Roofs.** For *roofs*, other than *roofs* over ventilated attics or *roofs* over *semi-heated spaces* or *roofs* over *conditioned spaces* that are not *cooled spaces*, where the exterior surface has
- a. a solar reflectance of 0.70 when tested in accordance with ASTM C1549, ASTM E903, or ASTM E1918 and, in addition, a minimum thermal emittance of 0.75 when tested in accordance with ASTM C1371 or ASTM E408 or
- a minimum Solar Reflective Index of 82 when determined in accordance with the Solar Reflectance Index method in ASTM E1980,

the insulation value for the roof shall comply with the values in Table 5.5.3.1. The values for solar reflectance and thermal emittance shall be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the Cool Roof Rating Council CRRC-1 Product Rating Program, and shall be labeled and certified by the manufacturer.

- **5.5.3.2 Above-Grade Wall Insulation.** All *above-grade walls* shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8. When a *wall* consists of both *above-grade* and *below-grade* portions, the entire *wall* for that story shall be insulated on either the exterior or the interior or be integral.
- a. If insulated on the interior, the *wall* shall be insulated to the *above-grade wall* requirements.
- b. If insulated on the exterior or integral, the below-grade wall portion shall be insulated to the below-grade wall requirements, and the above-grade wall portion shall be insulated to the above-grade wall requirements.
- **5.5.3.3 Below-Grade Wall Insulation.** *Below-grade walls* shall have a *rated R-value of insulation* no less than the insulation values specified in Tables 5.5-1 through 5.5-8.
- **Exception:** Where framing, including metal and wood studs, is used, compliance shall be based on the maximum assembly *C-factor*.
- **5.5.3.4 Floor Insulation.** All *floors* shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8.
- **5.5.3.5 Slab-on-Grade Floor Insulation.** All *slab-on-grade floors*, including *heated slab-on-grade floors* and *unheated slab-on-grade floors*, shall comply with the insulation values specified in Tables 5.5-1 through 5.5-8.
- **5.5.3.6 Opaque Doors.** All *opaque doors* shall have a *U-factor* not greater than that specified in Tables 5.5-1 through 5.5-8.

TABLE 5.5.3.1 High Albedo Roof Insulation

Climate	One one Flomente	Nonre	sidential	Residential		
Zone	Opaque Elements (Roofs)	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	
	Insulation entirely above deck	U-0.082	R-12.0 c.i.	U-0.081	R-12.0 c.i.	
1	Metal building	U-0.084	R-13	U-0.084	R-13.0	
	Attic and other ^a	U-0.044	R-24.0	U-0.035	R-30.0	
	Insulation entirely above deck	U-0.076	R-13.0 c.i.	U-0.076	R-13.0 c.i.	
2	Metal building	U-0.078	R-13.0	U-0.078	R-13.0	
	Attic and other ^a	U-0.041	R-25.0	U-0.032	R-30.0	
	Insulation entirely above deck	U-0.074	R-13.0 c.i.	U-0.074	R-13.0 c.i.	
3	Metal building	U-0.076	R-16	U-0.076	R-16.0	
	Attic and other ^a	U-0.040	R-25.0	U-0.032	R-30.0	
4, 5, 6, 7, 8	All roof opaque elements	NP	NP	NP	NP	

NP = Not permitted.

^aExcludes roofs over ventilated attics, or roofs over semiheated spaces, or roofs over conditioned spaces that are not cooled spaces.

5.5.4 Fenestration

5.5.4.1 General. Compliance with *U-factors* and *SHGC* shall be demonstrated for the overall fenestration product. Gross wall areas and gross roof areas shall be calculated separately for each *space-conditioning category* for the purposes of determining compliance.

Exception: If there are multiple assemblies within a single class of construction for a single space-conditioning category, compliance shall be based on an area-weighted average *U-factor* or SHGC. It is not acceptable to do an area-weighted average across multiple classes of construction or multiple space-conditioning categories.

5.5.4.2 Fenestration Area

5.5.4.2.1 Vertical Fenestration Area. The total *vertical fenestration area* shall be less than 40% of the *gross wall area*.

Exception: *Vertical fenestration* complying with Exception (c) to Section 5.5.4.4.1.

- **5.5.4.2.2 Skylight Fenestration Area.** The total *skylight area* shall be less than 5% of the *gross roof area*.
- **5.5.4.3 Fenestration U-Factor.** *Fenestration* shall have a *U-factor* not greater than that specified in Tables 5.5-1 through 5.5-8 for the appropriate *fenestration area*.

5.5.4.4 Fenestration Solar Heat aGain Coefficient (SHGC)

5.5.4.4.1 SHGC of Vertical Fenestration. *Vertical fenestration* shall have an *SHGC* not greater than that specified for "all" orientations in Tables 5.5-1 through 5.5-8 for the appropriate total *vertical fenestration area*.

Exceptions:

a. For demonstrating compliance for *vertical fenestra-tion* shaded by opaque permanent projections that will last as long as the building itself, the *SHGC* in the proposed building shall be reduced by using the multipliers in Table 5.5.4.4.1. Permanent projections

TABLE 5.5.4.4.1 SHGC Multipliers for Permanent Projections

Projection Factor	SHGC Multiplier (All Other Orientations)	SHGC Multiplier (North-Oriented)
0-0.10	1.00	1.00
>0.10-0.20	0.91	0.95
>0.20-0.30	0.82	0.91
>0.30-0.40	0.74	0.87
>0.40-0.50	0.67	0.84
>0.50-0.60	0.61	0.81
>0.60-0.70	0.56	0.78
>0.70-0.80	0.51	0.76
>0.80-0.90	0.47	0.75
>0.90-1.00	0.44	0.73

- consisting of open louvers shall be considered to provide shading, provided that no sun penetrates the louvers during the peak sun angle on June 21.
- b. For demonstrating compliance for *vertical fenestration* shaded by partially opaque permanent projections (e.g., framing with glass or perforated metal) that will last as long as the building itself, the PF shall be reduced by multiplying it by a factor of O_s , which is derived as follows:

$$O_s = (A_i \cdot O_i) + (A_f \cdot O_f)$$

where

- O_s = percent opacity of the shading device
- A_i = percent of the area of the shading device that is a partially opaque infill
- O_i = percent opacity of the infill—for glass O_i = $(100\% T_s)$, where T_s is the solar transmittance as determined in accordance with NFRC 300; for perforated or decorative metal panels O_i = percentage of solid material
- A_f = percent of the area of the shading device that represents the framing members
- O_f = percent opacity of the framing members; if solid, then 100%

And then the *SHGC* in the proposed building shall be reduced by using the multipliers in Table 5.5.4.4.1 for each *fenestration* product.

- c. *Vertical fenestration* that is located on the street side of the street-level story only, provided that
 - 1. the street side of the street-level story does not exceed 20 ft in height,
 - 2. the *fenestration* has a continuous overhang with a weighted average *PF* greater than 0.5, and
 - 3. the *fenestration area* for the street side of the street-level story is less than 75% of the *gross wall area* for the street side of the street-level story.

When this exception is utilized, separate calculations shall be performed for these sections of the *building envelope*, and these values shall not be averaged with any others for compliance purposes. No credit shall be given here or elsewhere in the building for not fully utilizing the *fenestration area* allowed.

5.5.4.4.2 SHGC of Skylights. *Skylights* shall have an *SHGC* not greater than that specified for "all" orientations in Tables 5.5-1 through 5.5-8 for the appropriate total *skylight* area.

5.6 Building Envelope Trade-Off Option

- **5.6.1** The *building envelope* complies with the standard if
- a. the proposed building satisfies the provisions of Sections 5.1, 5.4, 5.7, and 5.8, and
- b. the *envelope performance factor* of the proposed building is less than or equal to the *envelope performance factor* of the budget building.

- **5.6.1.1** The *envelope performance factor* considers only the *building envelope* components.
- **5.6.1.2** Schedules of operation, lighting power, equipment power, occupant density, and mechanical systems shall be the same for both the proposed building and the budget building.
- **5.6.1.3** *Envelope performance factor* shall be calculated using the procedures of Normative Appendix C.

5.7 Submittals

- **5.7.1 General.** The *authority having jurisdiction* may require submittal of compliance documentation and supplemental information, in accordance with Section 4.2.2 of this standard.
- **5.7.2 Submittal Document Labeling of Space Conditioning Categories.** For buildings that contain spaces that will be only semiheated or unconditioned, and compliance is sought using the "semiheated" envelope criteria, such spaces shall be clearly indicated on the floor plans that are submitted for review.

5.8 Product Information and Installation Requirements

5.8.1 Insulation

5.8.1.1 Labeling of Building Envelope Insulation. The *rated R-value* shall be clearly identified by an identification mark applied by the *manufacturer* to each piece of *building envelope* insulation.

Exception: When insulation does not have such an identification mark, the installer of such insulation shall provide a signed and dated certification for the installed insulation listing the type of insulation, the *manufacturer*, the *rated R-value*, and, where appropriate, the initial installed thickness, the settled thickness, and the coverage area.

5.8.1.2 Compliance with Manufacturers' Requirements. Insulation materials shall be installed in accordance with *manufacturers*' recommendations and in such a manner as to achieve *rated R-value of insulation*.

Exception: Where *metal building roof* and *metal building wall* insulation is compressed between the *roof* or *wall* skin and the structure.

- **5.8.1.3 Loose-Fill Insulation Limitation.** Openblown or poured loose-fill insulation shall not be used in *attic roof* spaces when the slope of the ceiling is more than three in twelve.
- **5.8.1.4 Baffles.** When eave vents are installed, baffling of the vent openings shall be provided to deflect the incoming air above the surface of the insulation.
- **5.8.1.5 Substantial Contact.** Insulation shall be installed in a permanent manner in *substantial contact* with the inside surface in accordance with *manufacturers*' recommendations for the framing system used. Flexible batt insulation installed in floor cavities shall be supported in a permanent manner by supports no greater than 24 in. on center.

Exception: Insulation materials that rely on air spaces adjacent to reflective surfaces for their rated performance.

5.8.1.6 Recessed Equipment. Lighting fixtures; heating, ventilating, and air-conditioning equipment, including wall heaters, ducts, and plenums; and other equipment shall

not be recessed in such a manner as to affect the insulation thickness unless

- a. the total combined area affected (including necessary clearances) is less than 1% of the opaque area of the assembly,
- b. the entire *roof*, *wall*, or *floor* is covered with insulation to the full depth required, or
- c. the effects of reduced insulation are included in calculations using an area-weighted average method and compressed insulation values obtained from Table A9.4.C.

In all cases, air leakage through or around the recessed equipment to the *conditioned space* shall be limited in accordance with Section 5.4.3.

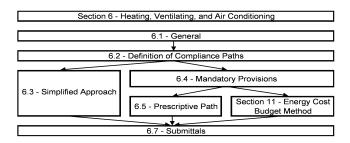
- **5.8.1.7 Insulation Protection.** Exterior insulation shall be covered with a protective material to prevent damage from sunlight, moisture, landscaping operations, equipment maintenance, and wind.
- **5.8.1.7.1** In *attics* and mechanical rooms, a way to access equipment that prevents damaging or compressing the insulation shall be provided.
- **5.8.1.7.2** Foundation vents shall not interfere with the insulation.
- **5.8.1.7.3** Insulation materials in ground contact shall have a water absorption rate no greater than 0.3% when tested in accordance with ASTM C272.
- **5.8.1.8 Location of Roof Insulation.** The *roof* insulation shall not be installed on a suspended ceiling with removable ceiling panels.
- **5.8.1.9 Extent of Insulation.** Insulation shall extend over the full component area to the required rated R-value of insulation, U-factor, C-factor, or F-factor, unless otherwise allowed in Section 5.8.1.

5.8.2 Fenestration and Doors

- **5.8.2.1 Rating of Fenestration Products.** The U-factor, SHGC, and air leakage rate for all manufactured *fenestration* products shall be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the National Fenestration Rating Council.
- **5.8.2.2 Labeling of Fenestration Products.** All manufactured *fenestration* products shall have a permanent nameplate, installed by the *manufacturer*, listing the U-factor, SHGC, and air leakage rate.
- **Exception:** When the *fenestration* product does not have such nameplate, the installer or supplier of such *fenestration* shall provide a signed and dated certification for the installed fenestration listing the U-factor, SHGC, and the air leakage rate.
- **5.8.2.3 Labeling of Doors.** The *U-factor* and the air leakage rate for all manufactured *doors* installed between *conditioned space*, *semi-heated space*, *unconditioned space*, and exterior *space* shall be identified on a permanent nameplate installed on the product by the *manufacturer*.

Exception: When doors do not have such a nameplate, the installer or supplier of any such doors shall provide a signed and dated certification for the installed doors listing the *U-factor* and the air leakage rate.

5.8.2.4 U-factor. U-factors shall be determined in accordance with NFRC 100. **U-factors** for skylights shall be determined for a slope of 20 degrees above the horizontal.


Exceptions:

- a. U-factors from Section A8.1 shall be an acceptable alternative for determining compliance with the U-factor criteria for *skylights*. Where credit is being taken for a low-emissivity coating, the emissivity of the coating shall be determined in accordance with NFRC 300. Emissivity shall be verified and certified by the *manufacturer*.
- b. U-factors from Section A8.2 shall be an acceptable alternative for determining compliance with the U-factor criteria for *vertical fenestration*.
- c. U-factors from Section A7 shall be an acceptable alternative for determining compliance with the U-factor criteria for *opaque doors*.
- d. For garage doors, ANSI/DASMA105 shall be an acceptable alternative for determining *U-factors*.
- **5.8.2.5 Solar Heat Gain Coefficient.** *SHGC* for the overall *fenestration area* shall be determined in accordance with NFRC 200.

Exceptions:

- a. SC of the center-of-glass multiplied by 0.86 shall be an acceptable alternative for determining compliance with the SHGC requirements for the overall fenestration area. SC shall be determined using a spectral data file determined in accordance with NFRC 300. SC shall be verified and certified by the manufacturer.
- b. SHGC of the center-of-glass shall be an acceptable alternative for determining compliance with the SHGC requirements for the overall fenestration area. SHGC shall be determined using a spectral data file determined in accordance with NFRC 300. SHGC shall be verified and certified by the manufacturer.
- c. *SHGC* from Section A8.1 shall be an acceptable alternative for determining compliance with the *SHGC* criteria for *skylights*. Where credit is being taken for a low-emissivity coating, the emissivity of the coating shall be determined in accordance with NFRC 300. Emissivity shall be verified and certified by the *manufacturer*.
- d. *SHGC* from Section A8.2 shall be an acceptable alternative for determining compliance with the *SHGC* criteria for *vertical fenestration*.
- **5.8.2.6 Visible Light Transmittance.** VLT shall be determined in accordance with NFRC 200. VLT shall be verified and certified by the *manufacturer*.

6. HEATING, VENTILATING, AND AIR CONDITIONING

6.1 General

6.1.1 Scope

- **6.1.1.1 New Buildings.** Mechanical equipment and systems serving the heating, cooling, or ventilating needs of new buildings shall comply with the requirements of this section as described in Section 6.2.
- **6.1.1.2** Additions to Existing Buildings. Mechanical equipment and systems serving the heating, cooling, or ventilating needs of *additions* to *existing buildings* shall comply with the requirements of this section as described in Section 6.2.
- Exception: When HVAC to an *addition* is provided by existing *HVAC systems* and equipment, such existing *systems* and *equipment* shall not be required to comply with this standard. However, any new *systems* or *equipment* installed must comply with specific requirements applicable to those *systems* and *equipment*.

6.1.1.3 Alterations to Heating, Ventilating, and Air Conditioning in Existing Buildings

- **6.1.1.3.1** New HVAC equipment as a direct replacement of existing HVAC equipment shall comply with the specific minimum *efficiency* requirements applicable to that equipment.
- **6.1.1.3.2** New cooling systems installed to serve previously uncooled spaces shall comply with this section as described in Section 6.2.
- **6.1.1.3.3** *Alterations* to existing cooling systems shall not decrease economizer capability unless the system complies with Section 6.5.1.
- **6.1.1.3.4** New and replacement ductwork shall comply with Sections 6.4.4.1 and 6.4.4.2.
- **6.1.1.3.5** New and replacement piping shall comply with Section 6.4.4.1.

Exceptions: Compliance shall not be required

- a. for equipment that is being modified or repaired but not replaced, provided that such modifications and/ or repairs will not result in an increase in the annual energy consumption of the equipment using the same energy type;
- b. where a replacement or *alteration* of *equipment* requires extensive revisions to other *systems*, *equip-*

- *ment*, or elements of a *building*, and such replaced or altered equipment is a like-for-like replacement;
- c. for a refrigerant change of existing *equipment*;
- d. for the relocation of existing equipment; or
- e. for ducts and pipes where there is insufficient space or access to meet these requirements.

6.2 Compliance Path(s)

- **6.2.1** Compliance with Section 6 shall be achieved by meeting all requirements for Section 6.1, General; Section 6.7, Submittals; Section 6.8, Minimum Equipment Efficiency; and either
- Section 6.3, Simplified Approach Option for HVAC Systems; or
- b. Section 6.4, Mandatory Provisions; and Section 6.5, Prescriptive Path.
- **6.2.2** Projects using the Energy Cost Budget Method (Section 11 of this standard) must comply with Section 6.4, the mandatory provisions of this section, as a portion of that compliance path.

6.3 Simplified Approach Option for HVAC Systems

- **6.3.1 Scope.** The simplified approach is an optional path for compliance when the following conditions are met:
- a. building is two stories or fewer in height
- b. gross floor area is less than 25,000 ft²
- c. each HVAC *system* in the building complies with the requirements listed in Section 6.3.2
- **6.3.2** Criteria. The HVAC *system* must meet ALL of the following criteria:

- a. The *system* serves a single *HVAC zone*.
- b. Cooling (if any) shall be provided by a unitary packaged or split-system air conditioner that is either air-cooled or evaporatively cooled with *efficiency* meeting the requirements shown in Table 6.8.1A (air conditioners), Table 6.8.1B (heat pumps), or Table 6.8.1D (packaged terminal and room air conditioners and heat pumps) for the applicable equipment category.
- c. The system shall have an air economizer where indicated in Table 6.5.1, with controls as indicated in Tables 6.5.1.1.3A and 6.5.1.1.3B and with either barometric or powered relief sized to prevent overpressurization of the building. Where the cooling efficiency meets or exceeds the efficiency requirement in Table 6.3.2, no economizer is required. Outdoor air dampers for economizer use shall be provided with blade and jamb seals.
- d. Heating (if any) shall be provided by a unitary packaged or split-system heat pump that meets the applicable *efficiency* requirements shown in Table 6.8.1B (heat pumps) or Table 6.8.1D (packaged terminal and room air conditioners and heat pumps), a fuel-fired furnace that meets the applicable *efficiency* requirements shown in Table 6.8.1E (furnaces, duct furnaces, and unit heaters), an electric resistance heater, or a baseboard system connected to a boiler that meets the applicable *efficiency* requirements shown in Table 6.8.1F (boilers).
- e. The *outdoor air* quantity supplied by the system shall be less than or equal to 3000 cfm and less than 70% of the supply air quantity at minimum *outdoor air* design conditions unless an energy recovery ventilation system is provided in accordance with the requirements in Section 6.5.6.
- f. The *system* shall be controlled by a manual changeover or dual setpoint thermostat.

TABLE 6.3.2 Eliminate Required Economizer by Increasing Cooling Efficiency

Unitary Systems with Heat Pump Heating						
			Clim	nate Zones		
System Size (kBtu/h)	Mandatory Minimum EER ^a	5 to 8	4	3	2	Test Procedure ^c
		Minimum Cooling Efficiency Required (EER) ^a				
≥65 and <135	10.1	N/A ^b	12.1	11.6	11.1	
≥135 and <240	9.3	N/A ^b	11.3	10.8	10.4	ARI 340/360
≥240 and <760	9.0	N/A ^b	10.9	10.5	10.0	

Other Unitary Systems

			Clin	nate Zones		
System Size (kBtu/h)	Mandatory Minimum EER ^a	5 to 8	4	3	2	Test Procedure ^c
(11214/11)	William EZI	Mini	mum Cooling E	fficiency Required	l (EER) ^a	
≥65 and <135	10.3	N/A ^b	12.5	12.0	11.5	
≥135 and <240	9.7	N/A ^b	11.5	11.1	10.6	ARI 340/360
≥240 and <760	9.5	N/A ^b	11.2	10.7	10.3	

^a Each EER shown should be reduced by 0.2 for units with a heating section other than electric resistance heat.

^b Elimination of required economizer is not allowed.

c Section 12 contains complete specification of the referenced test procedure, including the referenced year version of the test procedure.

- If a heat pump equipped with auxiliary internal electric resistance heaters is installed, controls shall be provided that prevent supplemental heater operation when the heating load can be met by the heat pump alone during both steady-state operation and setback recovery. Supplemental heater operation is permitted during outdoor coil defrost cycles. Two means of meeting this requirement are (1) a digital or electronic thermostat designed for heat pump use that energizes auxiliary heat only when the heat pump has insufficient capacity to maintain setpoint or to warm up the space at a sufficient rate or (2) a multistage space thermostat and an outdoor air thermostat wired to energize auxiliary heat only on the last stage of the space thermostat and when outside air temperature is less than 40°F. Heat pumps whose minimum efficiency is regulated by NAECA and whose HSPF rating both meets the requirements shown in Table 6.8.1B and includes all usage of internal electric resistance heating are exempted from the control requirements of this part (Section 6.3.2[g]).
- h. The *system* controls shall not permit reheat or any other form of simultaneous heating and cooling for humidity control.
- i. Systems serving spaces other than hotel/motel guest rooms, and other than those requiring continuous operation, which have both a cooling or heating capacity greater than 15,000 Btu/h and a supply fan motor power greater than 0.75 hp, shall be provided with a time clock that (1) can start and stop the system under different schedules for seven different day-types per week, (2) is capable of retaining programming and time setting during a loss of power for a period of at least ten hours, (3) includes an accessible manual override that allows temporary operation of the system for up to two hours, (4) is capable of temperature setback down to 55°F during off hours, and (5) is capable of temperature setup to 90°F during off hours.
- j. Except for piping within manufacturers' units, HVAC piping shall be insulated in accordance with Table 6.8.3. Insulation exposed to weather shall be suitable for outdoor service, e.g., protected by aluminum, sheet metal, painted canvas, or plastic cover. Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation.
- k. Ductwork and plenums shall be insulated in accordance with Tables 6.8.2A and 6.8.2B and shall be sealed in accordance with Table 6.4.4.2A.
- Construction documents shall require a ducted system to be air balanced in accordance with industryaccepted procedures.
- m. Where separate heating and cooling equipment serves the same temperature zone, thermostats shall be interlocked to prevent simultaneous heating and cooling.
- n. Exhausts with a design capacity of over 300 cfm on *systems* that do not operate continuously shall be equipped with gravity or motorized dampers that will automatically shut when the *systems* are not in use.
- o. *Systems* with a design supply air capacity greater than 10,000 cfm shall have *optimum start controls*.

6.4 Mandatory Provisions

6.4.1 Equipment Efficiencies, Verification, and Labeling Requirements

6.4.1.1 Minimum Equipment Efficiencies—**Listed Equipment**—**Standard Rating and Operating Conditions.** Equipment shown in Tables 6.8.1A through 6.8.1G shall have a minimum performance at the specified rating conditions when tested in accordance with the specified test procedure. Where multiple rating conditions or performance requirements are provided, the equipment shall satisfy all stated requirements, unless otherwise exempted by footnotes in the table. Equipment covered under the Federal Energy Policy Act of 1992 (EPACT) shall have no minimum *efficiency* requirements for operation at minimum capacity or other than standard rating conditions. Equipment used to provide water heating functions as part of a combination system shall satisfy all stated requirements for the appropriate space heating or cooling category.

Tables are as follows:

- a. Table 6.8.1A—Air Conditioners and Condensing Units
- b. Table 6.8.1B—Heat Pumps
- c. Table 6.8.1C—Water-Chilling Packages (see Section 6.4.1.2 for water-cooled centrifugal water-chilling packages that are designed to operate at nonstandard conditions)
- d. Table 6.8.1D—Packaged Terminal and Room Air Conditioners and Heat Pumps
- e. Table 6.8.1E—Furnaces, Duct Furnaces, and Unit Heaters
- f. Table 6.8.1F—Boilers
- g. Table 6.8.1G—Heat Rejection Equipment

All furnaces with input ratings of \geq 225,000 Btu/h, including electric furnaces, that are not located within the conditioned space shall have jacket losses not exceeding 0.75% of the input rating.

6.4.1.2 Minimum Equipment Efficiencies—Listed Equipment—Nonstandard Conditions. Water-cooled centrifugal water-chilling packages that are not designed for operation at ARI Standard 550/590 test conditions (and, thus, cannot be tested to meet the requirements of Table 6.8.1C) of 44°F leaving chilled-water temperature and 85°F entering condenser-water temperature with 3 gpm/ton condenserwater flow shall have a minimum full-load COP and a minimum *NPLV* rating as shown in the tables referenced below.

- Centrifugal chillers <150 tons shall meet the minimum full-load COP and IPLV/NPLV in Table 6.8.1H.
- Centrifugal chillers ≥150 tons and <300 tons shall meet the minimum full-load COP and IPLV/NPLV in Table 6.8.1I.
- c. Centrifugal chillers ≥300 tons shall meet the minimum full-load COP and IPLV/NPLV in Table 6.8.1J.

The table values are only applicable over the following full-load design ranges:

- Leaving Chiller-Water Temperature: 40°F to 48°F
- Entering Condenser-Water Temperature: 75°F to 85°F
- Condenser-Water Temperature Rise: 5°F to 15°F

Chillers designed to operate outside of these ranges or applications utilizing fluids or solutions with secondary coolants (e.g., glycol solutions or brines) with a freeze point of 27°F or lower for freeze protection are not covered by this standard.

- **6.4.1.3 Equipment Not Listed.** Equipment not listed in the tables referenced in Sections 6.4.1.1 and 6.4.1.2 may be used.
- **6.4.1.4 Verification of Equipment Efficiencies.** Equipment *efficiency* information supplied by *manufacturers* shall be verified as follows:
- a. Equipment covered under EPACT shall comply with U.S. Department of Energy certification requirements.
- b. If a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment *efficiency* ratings, then the product shall be listed in the certification program, or
- c. if a certification program exists for a covered product, and it includes provisions for verification and challenge of equipment *efficiency* ratings, but the product is not listed in the existing certification program, the ratings shall be verified by an independent laboratory test report, or
- d. if no certification program exists for a covered product, the equipment *efficiency* ratings shall be supported by data furnished by the *manufacturer*, or
- e. where components such as indoor or outdoor coils from different *manufacturers* are used, the system designer shall specify component efficiencies whose combined *efficiency* meets the minimum equipment *efficiency* requirements in Section 6.4.1.

6.4.1.5 Labeling

- **6.4.1.5.1 Mechanical Equipment.** Mechanical equipment that is not covered by the U.S. National Appliance Energy Conservation Act (NAECA) of 1987 shall carry a permanent label installed by the *manufacturer* stating that the equipment complies with the requirements of Standard 90.1.
- **6.4.1.5.2 Packaged Terminal Air Conditioners.** Packaged terminal air conditioners and heat pumps with sleeve sizes less than 16 in. high and 42 in. wide shall be factory labeled as follows: *Manufactured for replacement applications only: not to be installed in new construction projects.*
- **6.4.2 Load Calculations.** Heating and cooling system design loads for the purpose of sizing systems and equipment shall be determined in accordance with generally accepted engineering standards and handbooks acceptable to the *adopting authority* (for example, *ASHRAE Handbook—Fundamentals*).

6.4.3 Controls

6.4.3.1 Zone Thermostatic Controls

6.4.3.1.1 General. The supply of heating and cooling energy to each *zone* shall be individually controlled by thermostatic controls responding to temperature within the *zone*. For the purposes of Section 6.4.3.1, a dwelling unit shall be permitted to be considered a single *zone*.

Exceptions: Independent perimeter systems that are designed to offset only *building envelope* loads shall be

permitted to serve one or more *zones* also served by an interior system provided

- a. the perimeter system includes at least one thermostatic control zone for each building exposure having exterior walls facing only one *orientation* for 50 contiguous feet or more, and
- b. the perimeter system heating and cooling supply is controlled by a thermostatic control(s) located within the zones(s) served by the system.

Exterior walls are considered to have different *orientations* if the directions they face differ by more than 45 degrees.

6.4.3.1.2 Dead Band. Where used to control both heating and cooling, zone thermostatic controls shall be capable of providing a temperature range or dead band of at least 5°F within which the supply of heating and cooling energy to the zone is shut off or reduced to a minimum.

Exceptions:

- Thermostats that require manual changeover between heating and cooling modes.
- b. Special occupancy or special applications where wide temperature ranges are not acceptable (such as retirement homes, process applications, museums, some areas of hospitals) and are approved by the authority having jurisdiction.
- **6.4.3.2 Setpoint Overlap Restriction.** Where heating and cooling to a zone are controlled by separate zone thermostatic controls located within the zone, means (such as limit switches, mechanical stops, or, for DDC systems, software programming) shall be provided to prevent the heating setpoint from exceeding the cooling setpoint minus any applicable proportional band.
- **6.4.3.3 Off-Hour Controls.** HVAC systems shall have the off-hour controls required by Sections 6.4.3.3.1 through 6.4.3.3.4.

Exceptions:

- a. HVAC systems intended to operate continuously.
- b. HVAC systems having a design heating capacity and cooling capacity less than 15,000 Btu/h that are equipped with readily accessible manual ON/ OFF controls.
- **6.4.3.3.1 Automatic Shutdown.** *HVAC systems* shall be equipped with at least one of the following:
- a. Controls that can start and stop the system under different time schedules for seven different day-types per week, are capable of retaining programming and time setting during loss of power for a period of at least ten hours, and include an accessible manual override, or equivalent function, that allows temporary operation of the system for up to two hours.

- b. An *occupant sensor* that is capable of shutting the system off when no occupant is sensed for a period of up to 30 minutes.
- c. A manually operated timer capable of being adjusted to operate the system for up to two hours.
- d. An interlock to a security system that shuts the system off when the security system is activated.

Exception: Residential occupancies may use controls that can start and stop the system under two different time schedules per week.

6.4.3.3.2 Setback Controls. Heating systems located in climate zones 2–8 shall be equipped with controls that have the capability to automatically restart and temporarily operate the system as required to maintain *zone* temperatures above a heating setpoint adjustable down to 55°F or lower. Cooling systems located in climate zones 1b, 2b, and 3b shall be equipped with controls that have the capability to automatically restart and temporarily operate the system as required to maintain *zone* temperatures below a cooling setpoint adjustable up to 90°F or higher or to prevent high space humidity levels.

Exception: Radiant floor and ceiling heating systems.

6.4.3.3.3 Optimum Start Controls. Individual heating and cooling air distribution systems with a total design supply air capacity exceeding 10,000 cfm, served by one or more supply fans, shall have *optimum start controls*. The control algorithm shall, as a minimum, be a function of the difference between space temperature and occupied setpoint and the amount of time prior to scheduled occupancy.

6.4.3.3.4 Zone Isolation. HVAC systems serving zones that are intended to operate or be occupied nonsimultaneously shall be divided into isolation areas. Zones may be grouped into a single isolation area provided it does not exceed 25,000 ft² of conditioned floor area nor include more than one floor. Each isolation area shall be equipped with isolation devices capable of automatically shutting off the supply of conditioned air and outdoor air to and exhaust air from the area. Each isolation area shall be controlled independently by a device meeting the requirements of Section 6.4.3.3.1, Automatic Shutdown. For central systems and plants, controls and devices shall be provided to allow stable system and equipment operation for any length of time while serving only the smallest isolation area served by the system or plant.

Exceptions: Isolation devices and controls are not required for the following:

- a. Exhaust air and *outdoor air* connections to isolation *zones* when the fan system to which they connect is 5000 cfm and smaller.
- b. Exhaust airflow from a single isolation *zone* of less than 10% of the design airflow of the exhaust system to which it connects.
- c. *Zones* intended to operate continuously or intended to be inoperative only when all other *zones* are inoperative.

6.4.3.4 Ventilation System Controls

6.4.3.4.1 Stair and Shaft Vents. Stair and elevator shaft vents shall be equipped with motorized dampers that are capable of being automatically closed during normal building operation and are interlocked to open as required by fire and smoke detection systems.

6.4.3.4.2 Gravity Hoods, Vents, and Ventilators. All *outdoor air* supply and exhaust hoods, vents, and ventilators shall be equipped with motorized dampers that will automatically shut when the spaces served are not in use.

Exceptions:

- a. Gravity (nonmotorized) dampers are acceptable in buildings less than three stories in height above grade and for buildings of any height located in climate zones 1, 2, and 3.
- b. Ventilation systems serving unconditioned spaces.

6.4.3.4.3 Shutoff Damper Controls. Both *outdoor air* supply and exhaust systems shall be equipped with motorized dampers that will automatically shut when the systems or spaces served are not in use. Ventilation *outdoor air* dampers shall be capable of automatically shutting off during preoccupancy building warm-up, cool down, and *setback*, except when *ventilation* reduces energy costs (e.g., night purge) or when ventilation must be supplied to meet code requirements.

Exceptions:

- a. Gravity (nonmotorized) dampers are acceptable in buildings less than three stories in height and for buildings of any height located in climate zones 1, 2, and 3.
- Gravity (nonmotorized) dampers are acceptable in systems with a design *outdoor air* intake or exhaust capacity of 300 cfm or less.

6.4.3.4.4 Dampers. Where *outdoor air* supply and exhaust air dampers are required by Section 6.4.3.4, they shall have a maximum leakage rate when tested in accordance with AMCA Standard 500 as indicated in Table 6.4.3.4.4.

6.4.3.4.5 Ventilation Fan Controls. Fans with motors greater than 0.75 hp shall have automatic controls complying with Section 6.4.3.3.1 that are capable of shutting off fans when not required.

Exception: HVAC systems intended to operate continuously.

6.4.3.5 Heat Pump Auxiliary Heat Control. Heat pumps equipped with internal electric resistance heaters shall

TABLE 6.4.3.4.4 Maximum Damper Leakage

Climate Zones	Maximum Damper Leakage at 1.0 in. w.g (cfm per ft ² of damper area)		
	Motorized	Nonmotorized	
1, 2, 6, 7, 8	4	Not allowed	
All others	10	20 ^a	

^a Dampers smaller than 24 in. in either dimension may have leakage of 40 cfm/ft².

have controls that prevent supplemental heater operation when the heating load can be met by the heat pump alone during both steady-state operation and setback recovery. Supplemental heater operation is permitted during outdoor coil defrost cycles.

- **Exceptions:** Heat pumps whose minimum *efficiency* is regulated by NAECA and whose HSPF rating both meets the requirements shown in Table 6.8.1B and includes all usage of internal electric resistance heating.
- **6.4.3.6 Humidifier Preheat.** Humidifiers with preheating jackets mounted in the airstream shall be provided with an automatic valve to shut off preheat when humidification is not required.
- **6.4.3.7 Humidification and Dehumidification.** Where a *zone* is served by a system or systems with both humidification and dehumidification capability, means (such as limit switches, mechanical stops, or, for DDC systems, software programming) shall be provided capable of preventing simultaneous operation of humidification and dehumidification equipment.

Exceptions:

- Zones served by desiccant systems, used with direct evaporative cooling in series.
- b. Systems serving zones where specific humidity levels are required, such as museums and hospitals, and approved by the *authority having jurisdiction*.

6.4.3.8 Freeze Protection and Snow/Ice Melting Systems. Freeze protection systems, such as heat tracing of outdoor piping and heat exchangers, including self-regulating heat tracing, shall include automatic controls capable of shutting off the systems when *outdoor air* temperatures are above 40°F or when the conditions of the protected fluid will prevent freezing. Snow- and ice-melting systems shall include automatic controls capable of shutting off the systems when the pavement temperature is above 50°F and no precipitation is falling and an automatic or manual control that will allow shutoff when the outdoor temperature is above 40°F so that the potential for snow or ice accumulation is negligible.

- **6.4.3.9 Ventilation Controls for High-Occupancy Areas.** Demand control ventilation (DCV) is required for spaces larger than 500 ft² and with a design occupancy for ventilation of greater than 40 people per 1000 ft² of floor area and served by systems with one or more of the following:
- a. an air-side economizer,
- b. automatic modulating control of the outdoor air damper, or
- c. a design outdoor airflow greater than 3000 cfm.

Exceptions:

- a. Systems with energy recovery complying with Section 6.5.6.1.
- b. Multiple-zone systems without DDC of individual zones communicating with a central control panel.
- c. Systems with a design outdoor airflow less than 1200 cfm.

d. Spaces where the supply airflow rate minus any makeup or outgoing transfer air requirement is less than 1200 cfm.

6.4.4 HVAC System Construction and Insulation

6.4.4.1 Insulation

- **6.4.4.1.1 General.** Insulation required by this section shall be installed in accordance with industry-accepted standards (see Informative Appendix E). These requirements do not apply to HVAC equipment. Insulation shall be protected from damage, including that due to sunlight, moisture, equipment maintenance and wind, but not limited to the following:
- a. Insulation exposed to weather shall be suitable for out-door service, e.g., protected by aluminum, sheet metal, painted canvas, or plastic cover. Cellular foam insulation shall be protected as above or painted with a coating that is water retardant and provides shielding from solar radiation that can cause degradation of the material.
- b. Insulation covering chilled-water piping, refrigerant suction piping, or cooling ducts located outside the conditioned space shall include a vapor retardant located outside the insulation (unless the insulation is inherently vapor retardant), all penetrations and joints of which shall be sealed.
- **6.4.4.1.2 Duct and Plenum Insulation.** All supply and return ducts and plenums installed as part of an HVAC air distribution system shall be thermally insulated in accordance with Tables 6.8.2A and 6.8.2B.

Exceptions:

- Factory-installed plenums, casings, or ductwork furnished as a part of HVAC equipment tested and rated in accordance with Section 6.4.1.
- b. Ducts or plenums located in heated spaces, *semi-heated spaces*, or cooled spaces.
- For runouts less than 10 ft in length to air terminals or air outlets, the rated R-value of insulation need not exceed R-3.5.
- d. Backs of air outlets and outlet plenums exposed to unconditioned or indirectly *conditioned* spaces with face areas exceeding 5 ft² need not exceed R-2; those 5 ft² or smaller need not be insulated.
- **6.4.4.1.3 Piping Insulation.** Piping shall be thermally insulated in accordance with Table 6.8.3.

Exceptions:

- a. Factory-installed piping within HVAC equipment tested and rated in accordance with Section 6.4.1.
- Piping that conveys fluids having a design operating temperature range between 60°F and 105°F, inclusive.
- c. Piping that conveys fluids that have not been heated or cooled through the use of nonrenewable energy (such as roof and condensate drains, domestic cold water supply, natural gas piping, or refrigerant liquid piping) or where heat gain or heat loss will not increase energy usage.

- d. Hot-water piping between the shutoff valve and the coil, not exceeding 4 ft in length, when located in *conditioned spaces*.
- e. Pipe unions in heating systems (steam, steam condensate, and hot water).

6.4.4.2 Ducts and Plenum Leakage

6.4.4.2.1 Duct Sealing. Ductwork and plenums shall be sealed in accordance with Table 6.4.4.2A (Table 6.4.4.2B provides definitions of seal levels), as required to meet the requirements of Section 6.4.4.2.2 and with standard industry practice (see Informative Appendix E).

6.4.4.2.2 Duct Leakage Tests. Ductwork that is designed to operate at static pressures in excess of 3 in. w.c. shall be leak-tested according to industry-accepted test procedures (see Informative Appendix E). Representative sections totaling no less than 25% of the total installed duct area for the designated pressure class shall be tested. Duct systems with pressure ratings in excess of 3 in. w.c. shall be identified on the drawings. The maximum permitted duct leakage shall be

$$L_{max} = C_L P^{0.65}$$
,

TABLE 6.4.4.2A Minimum Duct Seal Level^a

		Duct Type		
Duct Location	S	upply	F. 1	D 4
	≤2 in. w.c. ^b	>2 in. w.c. ^b	Exhaust	Return
Outdoor	A	A	С	A
Unconditioned spaces	В	A	C	В
Conditioned spaces ^c	C	В	В	C

^a See Table 6.4.4.2B description of seal level.

TABLE 6.4.4.2B Duct Seal Levels

Seal Level	Sealing Requirements ^a
A	All transverse joints, longitudinal seams, and duct wall penetrations. Pressure-sensitive tape shall not be used as the primary sealant, unless it has been certified to comply with UL-181A or UL-181B by an independent testing laboratory and the tape is used in accordance with that certification.
В	All transverse joints, longitudinal seams. Pressure-sensitive tape shall not be used as the primary sealant, unless it has been certified to comply with UL-181A or UL-181B by an independent testing laboratory and the tape is used in accordance with that certification.
C	Transverse joints only.

^a Longitudinal seams are joints oriented in the direction of airflow. Transverse joints are connections of two duct sections oriented perpendicular to airflow. Duct wall penetrations are openings made by any screw fastener, pipe, rod, or wire. Spiral lock seams in a round or flat oval duct need not be sealed. All other connections are considered transverse joints, including but not limited to spin-ins, taps, and other branch connections, access door frames and jambs, duct connections to equipment, etc.

where

 L_{max} = maximum permitted leakage in cfm/100 ft² duct surface area;

 C_L = duct leakage class, cfm/100 ft² at 1 in. w.c., 6 for rectangular sheetmetal, rectangular fibrous, and round flexible ducts,

3 for round/flat oval sheetmetal or fibrous glass ducts; and

P = test pressure, which shall be equal to the design duct pressure class rating in in. w.c.

6.4.5 Completion Requirements. Completion requirements are as described in Section 6.7.2.

6.5 Prescriptive Path

6.5.1 Economizers. Each cooling system that has a fan shall include either an air or water economizer meeting the requirements of Sections 6.5.1.1 through 6.5.1.4.

Exceptions: Economizers are not required for the systems listed below.

- a. Individual fan-cooling units with a supply capacity less than the minimum listed in Table 6.5.1.
- b. Systems that include nonparticulate air treatment as required by Section 6.2.1 in Standard 62.1.
- c. Where more than 25% of the air designed to be supplied by the system is to spaces that are designed to be humidified above 35°F dew-point temperature to satisfy process needs.
- d. Systems that include a condenser heat recovery system required by Section 6.5.6.2.
- e. Systems that serve *residential* spaces where the system capacity is less than five times the requirement listed in Table 6.5.1.
- f. Systems that serve spaces whose sensible cooling load at design conditions, excluding transmission and infiltration loads, is less than or equal to transmission and infiltration losses at an outdoor temperature of 60°F.
- g. Systems expected to operate less than 20 hours per week.
- h. Where the use of *outdoor air* for cooling will affect supermarket open refrigerated casework systems.
- i. Where the cooling *efficiency* meets or exceeds the *efficiency* requirements in Table 6.3.2.

6.5.1.1 Air Economizers

6.5.1.1.1 Design Capacity. Air economizer systems shall be capable of modulating *outdoor air* and return air

TABLE 6.5.1 Minimum System Size for Which an Economizer is Required

Climate Zones	Cooling Capacity for Which an Economizer is Required
1a, 1b, 2a, 3a, 4a	No economizer requirement
2b, 5a, 6a, 7, 8	≥135,000 Btu/h
3b, 3c, 4b, 4c, 5b, 5c, 6b	≥65,000 Btu/h

^bDuct design static pressure classification.

^c Includes indirectly conditioned spaces such as return air plenums.

dampers to provide up to 100% of the design supply air quantity as *outdoor air* for cooling.

6.5.1.1.2 Control Signal. Economizer dampers shall be capable of being sequenced with the mechanical cooling equipment and shall not be controlled by only mixed air temperature.

Exception: The use of mixed air temperature limit control shall be permitted for systems controlled from space temperature (such as single-zone systems).

6.5.1.1.3 High-Limit Shutoff. All air economizers shall be capable of automatically reducing *outdoor air* intake to the design minimum *outdoor air* quantity when *outdoor air* intake will no longer reduce cooling energy usage. High-limit shutoff control types for specific climates shall be chosen from Table 6.5.1.1.3A. High-limit shutoff control settings for these control types shall be those listed in Table 6.5.1.1.3B.

- **6.5.1.1.4 Dampers.** Both return air and *outdoor air* dampers shall meet the requirements of Section 6.4.3.3.4.
- **6.5.1.1.5 Relief of Excess** *Outdoor Air.* Systems shall provide a means to relieve excess *outdoor air* during air economizer operation to prevent overpressurizing the building. The relief air outlet shall be located to avoid recirculation into the building.

6.5.1.2 Water Economizers

6.5.1.2.1 Design Capacity. Water economizer systems shall be capable of cooling supply air by indirect evaporation and providing up to 100% of the expected system cooling load at *outdoor air* temperatures of 50°F dry bulb/45°F wet bulb and below.

Exception: Systems in which a water economizer is used and where dehumidification requirements cannot be met using *outdoor air* temperatures of 50°F dry bulb/45°F

TABLE 6.5.1.1.3A High-Limit Shutoff Control Options for Air Economizers

Climate Zones	Allowed Control Types	Prohibited Control Types
	Fixed dry bulb	
	Differential dry bulb	
1b, 2b, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 7, 8	Electronic enthalpy ^a	Fixed enthalpy
	Differential enthalpy	
	Dew-point and dry-bulb temperatures	
	Fixed dry bulb	
	Fixed enthalpy	
1a, 2a, 3a, 4a	Electronic enthalpy ^a	Differential dry bulb
	Differential enthalpy	-
	Dew-point and dry-bulb temperatures	
	Fixed dry bulb	
	Differential dry bulb	
All other climates	Fixed enthalpy	
	Electronic enthalpy ^a	
	Differential enthalpy	
	Dew-point and dry-bulb temperatures	

^a Electronic enthalpy controllers are devices that use a combination of humidity and dry-bulb temperature in their switching algorithm.

TABLE 6.5.1.1.3B High-Limit Shutoff Control Settings for Air Economizers

Device Type	Climate	Required High Limit (Economizer Off When):		
	1h 2h 2h 2a 4h 4a 5h 5a 6h 7 9	Equation	Description	
Fixed dry bulb	1b, 2b, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 7, 8 5a, 6a, 7a All other zones	$T_{OA} > 75$ °F $T_{OA} > 70$ °F $T_{OA} > 65$ °F	Outdoor air temperature exceeds 75°F Outdoor air temperature exceeds 70°F Outdoor air temperature exceeds 65°F	
Differential dry bulb	1b, 2b, 3b, 3c, 4b, 4c, 5a, 5b, 5c, 6a, 6b, 7, 8	$T_{OA} > T_{RA}$	Outdoor air temperature exceeds return air temperature	
Fixed enthalpy	All	$h_{OA} > 28 \text{ Btu/lb}^a$	Outdoor air enthalpy exceeds 28 Btu/lb of dry air ^a	
Electronic enthalpy	All	$(T_{OA}, RH_{OA}) > A$	Outdoor air temperature/RH exceeds the "A" setpoint curve ^b	
Differential enthalpy	All	$h_{OA} > h_{RA}$	Outdoor air enthalpy exceeds return air enthalpy	
Dew-point and dry-bulb temperatures	All	DP_{oa} > 55°F or T_{oa} > 75°F	Outdoor air dry bulb exceeds 75°F or outside dew point exceeds 55°F (65 gr/lb)	

^a At altitudes substantially different than sea level, the Fixed Enthalpy limit shall be set to the enthalpy value at 75°F and 50% relative humidity. As an example, at approximately 6000 ft elevation the fixed enthalpy limit is approximately 30.7 Btu/lb.

bSetpoint "A" corresponds to a curve on the psychrometric chart that goes through a point at approximately 75°F and 40% relative humidity and is nearly parallel to dry-bulb lines at low humidity levels and nearly parallel to enthalpy lines at high humidity levels.

wet bulb must satisfy 100% of the expected system cooling load at 45°F dry bulb/40°F wet bulb.

- 6.5.1.2.2 Maximum Pressure Drop. Precooling coils and water-to-water heat exchangers used as part of a water economizer system shall either have a water-side pressure drop of less than 15 ft of water or a secondary loop shall be created so that the coil or heat exchanger pressure drop is not seen by the circulating pumps when the system is in the normal cooling (noneconomizer) mode.
- **6.5.1.3 Integrated Economizer Control.** Economizer systems shall be integrated with the mechanical cooling system and be capable of providing partial cooling even when additional mechanical cooling is required to meet the remainder of the cooling load.

Exceptions:

- a. Direct expansion systems that include controls that reduce the quantity of *outdoor air* required to prevent coil frosting at the lowest step of compressor unloading, provided this lowest step is no greater than 25% of the total system capacity.
- b. Individual direct expansion units that have a rated cooling capacity less than 65,000 Btu/h and use nonintegrated economizer controls that preclude simultaneous operation of the economizer and mechanical cooling.
- c. Systems in climate zones 1, 2, 3a, 4a, 5a, 5b, 6, 7, and 8.
- **6.5.1.4 Economizer Heating System Impact.** HVAC system design and economizer controls shall be such that economizer operation does not increase the building heating energy use during normal operation.
- **Exception:** Economizers on VAV systems that cause zone level heating to increase due to a reduction in supply air temperature.

6.5.2 Simultaneous Heating and Cooling Limitation

- **6.5.2.1 Zone Controls.** *Zone* thermostatic controls shall be capable of operating in sequence the supply of heating and cooling energy to the *zone*. Such controls shall prevent
- 1. reheating,
- 2. recooling,
- mixing or simultaneously supplying air that has been previously mechanically heated and air that has been previously cooled, either by mechanical cooling or by economizer systems, and
- 4. other simultaneous operation of heating and cooling systems to the same *zone*.

Exceptions:

- a. Zones for which the volume of air that is reheated, recooled, or mixed is no greater than the larger of the following:
 - 1. the volume of *outdoor air* required to meet the ventilation requirements of Section 6.2 of Standard 62.1 for the *zone*,
 - 2. 0.4 cfm/ft² of the zone conditioned floor area,

- 3. 30% of the zone design peak supply rate,
- 4. 300 cfm—this exception is for zones whose peak flow rate totals no more than 10% of the total fan system flow rate, or
- any higher rate that can be demonstrated, to the satisfaction of the *authority having jurisdiction*, to reduce overall system annual energy usage by offsetting reheat/recool energy losses through a reduction in *outdoor air* intake for the system.
- Zones where special pressurization relationships, cross-contamination requirements, or code-required minimum circulation rates are such that VAV systems are impractical.
- c. Zones where at least 75% of the energy for reheating or for providing warm air in mixing systems is provided from a site-recovered (including condenser heat) or site-solar energy source.
- **6.5.2.2 Hydronic System Controls.** The heating of fluids in hydronic systems that have been previously mechanically cooled and the cooling of fluids that have been previously mechanically heated shall be limited in accordance with Sections 6.5.2.2.1 through 6.5.2.2.3.
- **6.5.2.2.1 Three-Pipe System.** Hydronic systems that use a common return system for both hot water and chilled water shall not be used.
- **6.5.2.2.2 Two-Pipe Changeover System.** Systems that use a common distribution system to supply both heated and chilled water are acceptable provided all of the following are met:
- a. The system is designed to allow a dead band between changeover from one mode to the other of at least 15°F outdoor air temperature.
- b. The system is designed to operate and is provided with controls that will allow operation in one mode for at least four hours before changing over to the other mode.
- Reset controls are provided that allow heating and cooling supply temperatures at the changeover point to be no more than 30°F apart.

6.5.2.2.3 Hydronic (Water Loop) Heat Pump Systems. Hydronic heat pumps connected to a common heat pump water loop with central devices for heat rejection (e.g.,

pump water loop with central devices for heat rejection (e.g., cooling tower) and heat addition (e.g., boiler) shall have the following:

- a. Controls that are capable of providing a heat pump water supply temperature dead band of at least 20°F between initiation of heat rejection and heat addition by the central devices (e.g., tower and boiler).
- b. For climate zones 3 through 8, if a closed-circuit tower (fluid cooler) is used, either an automatic valve shall be installed to bypass all but a minimal flow of water around the tower (for freeze protection) or low-leakage positive closure dampers shall be provided. If an open-circuit tower is used directly in the heat pump loop, an automatic valve shall be installed to bypass all heat pump water flow

around the tower. If an open-circuit tower is used in conjunction with a separate heat exchanger to isolate the tower from the heat pump loop, then heat loss shall be controlled by shutting down the circulation pump on the cooling tower loop.

Exception: Where a system loop temperature optimization controller is used to determine the most efficient operating temperature based on real-time conditions of demand and capacity, dead bands of less than 20°F shall be allowed.

6.5.2.3 Dehumidification. Where humidistatic controls are provided, such controls shall prevent reheating, mixing of hot and cold airstreams, or other means of simultaneous heating and cooling of the same airstream.

Exceptions:

- a. The system is capable of reducing supply air volume to 50% or less of the design airflow rate or the minimum rate specified in Section 6.2 of Standard 62.1, whichever is larger, before simultaneous heating and cooling takes place.
- b. The individual fan cooling unit has a design cooling capacity of 80,000 Btu/h or less and is capable of unloading to 50% capacity before simultaneous heating and cooling takes place.
- c. The individual mechanical cooling unit has a design cooling capacity of 40,000 Btu/h or less. An individual mechanical cooling unit is a single system composed of a fan or fans and a cooling coil capable of providing mechanical cooling.
- d. Systems serving spaces where specific humidity levels are required to satisfy process needs, such as computer rooms, museums, surgical suites, and buildings with refrigerating systems, such as supermarkets, refrigerated warehouses, and ice arenas. This exception also applies to other applications for which fan volume controls in accordance with Exception (a) are proven to be impractical to the enforcement agency.
- e. At least 75% of the energy for reheating or for providing warm air in mixing systems is provided from a *site-recovered* (including condenser heat) or *site-solar energy* source.

- f. Systems where the heat added to the airstream is the result of the use of a desiccant system and 75% of the heat added by the desiccant system is removed by a heat exchanger, either before or after the desiccant system with energy recovery.
- **6.5.2.4 Humidification.** Systems with hydronic cooling and humidification systems designed to maintain inside humidity at a dew-point temperature greater than 35°F shall use a water economizer if an economizer is required by Section 6.5.1.
- **6.5.3 Air System Design and Control.** Each HVAC system having a total *fan system motor nameplate hp* exceeding 5 hp shall meet the provisions of Sections 6.5.3.1 through 6.5.3.2.

6.5.3.1 Fan System Power Limitation

6.5.3.1.1 Each HVAC system at fan system design conditions shall not exceed the allowable *fan system motor nameplate hp* (Option 1) or *fan system bhp* (Option 2) as shown in Table 6.5.3.1.1A. This includes supply fans, return/relief fans, exhaust fans, and fan-powered terminal units associated with systems providing heating or cooling capability.

Exceptions:

- a. Hospital and laboratory systems that utilize flow control devices on exhaust and/or return to maintain space pressure relationships necessary for occupant health and safety or environmental control may use variable-volume fan power limitation.
- b. Individual exhaust fans with motor nameplate horsepower of 1 hp or less.
- c. Fans exhausting air from fume hoods. *Note:* If this exception is taken, no related exhaust side credits shall be taken from Table 6.5.3.1.1B and the Fume Hood Exhaust Exception Deduction must be taken from Table 6.5.3.1.1B.

6.5.3.1.2 Motor Nameplate Horsepower. For each fan, the selected fan motor shall be no larger than the first available motor size greater than the bhp. The fan bhp must be indicated on the design documents to allow for compliance verification by the code official.

TABLE 6.5.3.1.1A Fan Power Limitation^a

	Limit	Constant Volume	Variable Volume
Option 1: Fan System Motor Nameplate hp	Allowable Nameplate Motor hp	$hp \le CFM_S \cdot 0.0011$	$hp \le CFM_S \cdot 0.0015$
Option 2: Fan System bhp	Allowable Fan System bhp	$bhp \le CFM_S \cdot 0.00094 + A$	$bhp \le CFM_S \cdot 0.0013 + A$

 $^{^{\}rm a}$ where

 CFM_S = the maximum design supply airflow rate to conditioned spaces served by the system in cubic feet per minute

= the maximum combined motor nameplate horsepower

bhp = the maximum combined fan brake horsepower $A = \text{sum of } (PD \times CFM_D/4131)$

where

PD = each applicable pressure drop adjustment from Table 6.5.3.1.1B in in. w.c.

 CFM_D = the design airflow through each applicable device from Table 6.5.3.1.1B in cubic feet per minute

TABLE 6.5.3.1.1B Fan Power Limitation Pressure Drop Adjustment

Device	Adjustment
Credits	
Fully ducted return and/or exhaust air systems	0.5 in. w.c.
Return and/or exhaust airflow control devices	0.5 in. w.c.
Exhaust filters, scrubbers, or other exhaust treatment	The pressure drop of device calculated at fan system design condition
Particulate Filtration Credit: MERV 9 through 12	0.5 in. w.c.
Particulate Filtration Credit: MERV 13 through 15	0.9 in. w.c.
Particulate Filtration Credit: MERV 16 and greater and electronically enhanced filters	Pressure drop calculated at 2× clean filter pressure drop at fan system design condition
Carbon and other gas-phase air cleaners	Clean filter pressure drop at fan system design condition
Heat recovery device	Pressure drop of device at fan system design condition
Evaporative humidifier/cooler in series with another cooling coil	Pressure drop of device at fan system design condition
Sound Attenuation Section	0.15 in. w.c.
Deductions	
Fume Hood Exhaust Exception (required if 6.5.3.1.1 Exception [c] is taken)	-1.0 in. w.c.

Exceptions:

- a. For fans less than 6 bhp, where the first available motor larger than the bhp has a nameplate rating within 50% of the bhp, the next larger nameplate motor size may be selected.
- b. For fans 6 bhp and larger, where the first available motor larger than the bhp has a nameplate rating with 30% of the bhp, the next larger nameplate motor size may be selected.

6.5.3.2 VAV Fan Control (Including Systems Using Series Fan Power Boxes)

6.5.3.2.1 Part-Load Fan Power Limitation. Individual VAV fans with motors 10 hp and larger shall meet one of the following:

- a. The fan shall be driven by a mechanical or electrical variable-speed drive.
- b. The fan shall be a vane-axial fan with variable-pitch blades
- c. The fan shall have other controls and devices that will result in fan motor demand of no more than 30% of design wattage at 50% of design air volume when static pressure setpoint equals one-third of the total design static pressure, based on *manufacturers*' certified fan data.
- 6.5.3.2.2 Static Pressure Sensor Location. Static pressure sensors used to control VAV fans shall be placed in a position such that the controller setpoint is no greater than one-third the total design fan static pressure, except for systems with zone reset control complying with Section 6.5.3.2.3. If this results in the sensor being located downstream of major duct splits, multiple sensors shall be installed in each major branch to ensure that static pressure can be maintained in each.
- **6.5.3.2.3 Setpoint Reset.** For systems with DDC of individual zone boxes reporting to the central control panel,

static pressure setpoint shall be reset based on the *zone* requiring the most pressure; i.e., the setpoint is reset lower until one *zone* damper is nearly wide open.

6.5.4 Hydronic System Design and Control. HVAC hydronic systems having a total *pump system power* exceeding 10 hp shall meet provisions of Sections 6.5.4.1 through 6.5.4.4.

6.5.4.1 Hydronic Variable Flow Systems. HVAC pumping systems that include control valves designed to modulate or step open and close as a function of load shall be designed for variable fluid flow and shall be capable of reducing pump flow rates to 50% or less of the design flow rate. Individual pumps serving variable flow systems having a pump head exceeding 100 ft and motor exceeding 50 hp shall have controls and/or devices (such as variable speed control) that will result in pump motor demand of no more than 30% of design wattage at 50% of design water flow. The controls or devices shall be controlled as a function of desired flow or to maintain a minimum required differential pressure. Differential pressure shall be measured at or near the most remote heat exchanger or the heat exchanger requiring the greatest differential pressure.

Exceptions:

- a. Systems where the minimum flow is less than the minimum flow required by the equipment *manufac-turer* for the proper operation of equipment served by the system, such as chillers, and where total pump system power is 75 hp or less.
- b. Systems that include no more than three control valves.
- **6.5.4.2 Pump Isolation.** When a chilled-water plant includes more than one chiller, provisions shall be made so that the flow in the chiller plant can be automatically reduced, correspondingly, when a chiller is shut down. Chillers referred to in this section, piped in series for the purpose of increased temperature differential, shall be considered as one chiller.

When a boiler plant includes more than one boiler, provisions shall be made so that the flow in the boiler plant can be automatically reduced, correspondingly, when a boiler is shut down.

6.5.4.3 Chilled- and Hot-Water Temperature Reset Controls. Chilled- and hot-water systems with a design capacity exceeding 300,000 Btu/h supplying chilled or heated water (or both) to comfort conditioning systems shall include controls that automatically reset supply water temperatures by representative building loads (including return water temperature) or by *outdoor air* temperature.

Exceptions:

- a. Where the supply temperature reset controls cannot be implemented without causing improper operation of heating, cooling, humidifying, or dehumidifying systems.
- Hydronic systems, such as those required by Section 6.5.4.1 that use variable flow to reduce pumping energy.

6.5.4.4 Hydronic (Water Loop) Heat Pump Systems.

Each hydronic heat pump shall have a two-position automatic valve interlocked to shut off water flow when the compressor is off.

6.5.5 Heat Rejection Equipment

6.5.5.1 General. Section 6.5.5 applies to heat rejection equipment used in comfort cooling systems such as air-cooled condensers, open cooling towers, closed-circuit cooling towers, and evaporative condensers.

Exception: Heat rejection devices whose energy usage is included in the equipment *efficiency* ratings listed in Tables 6.8.1A through 6.8.1D.

6.5.5.2 Fan Speed Control. Each fan powered by a motor of 7.5 hp or larger shall have the capability to operate that fan at two-thirds of full speed or less and shall have controls that automatically change the fan speed to control the leaving fluid temperature or condensing temperature/pressure of the heat rejection device.

Exceptions:

- a. Condenser fans serving multiple refrigerant circuits.
- b. Condenser fans serving flooded condensers.
- c. Installations located in climate zones 1 and 2.
- d. Up to one-third of the fans on a condenser or tower with multiple fans, where the lead fans comply with the speed control requirement.

6.5.6 Energy Recovery

6.5.6.1 Exhaust Air Energy Recovery. Individual fan systems that have both a design supply air capacity of 5000 cfm or greater and have a minimum *outdoor air* supply of 70% or greater of the design supply air quantity shall have an energy recovery system with at least 50% recovery effectiveness. Fifty percent energy recovery effectiveness shall mean a change in the enthalpy of the *outdoor air* supply equal to 50% of the difference between the *outdoor air* and return air at design conditions. Provision shall be made to bypass or control the heat recovery system to permit air economizer operation as required by Section 6.5.1.1.

Exceptions:

- . Laboratory systems meeting Section 6.5.7.2.
- Systems serving spaces that are not cooled and that are heated to less than 60°F.
- Systems exhausting toxic, flammable, paint, or corrosive fumes or dust.
- d. Commercial kitchen hoods used for collecting and removing grease vapors and smoke.
- e. Where more than 60% of the *outdoor air* heating energy is provided from site-recovered or site-solar energy.
- f. Heating systems in climate zones 1 through 3.
- g. Cooling systems in climate zones 3c, 4c, 5b, 5c, 6b, 7, and 8.
- h. Where the largest exhaust source is less than 75% of the design outdoor airflow.
- Systems requiring dehumidification that employ energy recovery in series with the cooling coil.

6.5.6.2 Heat Recovery for Service Water Heating

6.5.6.2.1 Condenser heat recovery systems shall be installed for heating or preheating of service hot water provided all of the following are true:

- a. The facility operates 24 hours a day.
- b. The total installed heat rejection capacity of the water-cooled systems exceeds 6,000,000 Btu/h of heat rejection.
- c. The design service water heating load exceeds 1,000,000 Btu/h.
- **6.5.6.2.2** The required heat recovery system shall have the capacity to provide the smaller of
- a. 60% of the peak heat rejection load at design conditions or
- b. preheat of the peak service hot water draw to 85°F.

Exceptions:

- a. Facilities that employ condenser heat recovery for space heating with a heat recovery design exceeding 30% of the peak water-cooled condenser load at design conditions.
- Facilities that provide 60% of their service water heating from site-solar or site-recovered energy or from other sources.

6.5.7 Exhaust Hoods

6.5.7.1 Kitchen Hoods. Individual kitchen exhaust hoods larger than 5000 cfm shall be provided with makeup air sized for at least 50% of exhaust air volume that is

- a. unheated or heated to no more than 60°F and
- b. uncooled or cooled without the use of mechanical cooling.

Exceptions:

 a. Where hoods are used to exhaust ventilation air that would otherwise exfiltrate or be exhausted by other fan systems.

- b. Certified grease extractor hoods that require a face velocity no greater than 60 fpm.
- **6.5.7.2 Fume Hoods.** Buildings with fume hood systems having a total exhaust rate greater than 15,000 cfm shall include at least one of the following features:
- VAV hood exhaust and room supply systems capable of reducing exhaust and makeup air volume to 50% or less of design values.
- b. Direct makeup (auxiliary) air supply equal to at least 75% of the exhaust rate, heated no warmer than 2°F below room setpoint, cooled to no cooler than 3°F above room setpoint, no humidification added, and no simultaneous heating and cooling used for dehumidification control.
- c. Heat recovery systems to precondition makeup air from fume hood exhaust in accordance with Section 6.5.6.1, Exhaust Air Energy Recovery, without using any exception.

6.5.8 Radiant Heating Systems

6.5.8.1 Heating Unenclosed Spaces. Radiant heating shall be used when heating is required for unenclosed spaces.

Exception: Loading docks equipped with air curtains.

- **6.5.8.2 Heating Enclosed Spaces.** Radiant heating systems that are used as primary or supplemental enclosed space heating must be in conformance with the governing provisions of the standard, including, but not limited to, the following:
- a. Radiant hydronic ceiling or floor panels (used for heating or cooling).
- b. Combination or hybrid systems incorporating radiant heating (or cooling) panels.
- Radiant heating (or cooling) panels used in conjunction with other systems such as VAV or thermal storage systems.
- **6.5.9 Hot Gas Bypass Limitation.** Cooling systems shall not use hot gas bypass or other evaporator pressure control systems unless the system is designed with multiple steps of unloading or continuous capacity modulation. The capacity of the hot gas bypass shall be limited as indicated in Table 6.5.9.

Exception: Unitary packaged systems with cooling capacities not greater than 90,000 Btu/h.

6.6 Alternative Compliance Path (Not Used)

6.7 Submittals

- **6.7.1 General.** The *Authority having jurisdiction* may require submittal of compliance documentation and supplemental information in accord with Section 4.2.2 of this standard.
- **6.7.2** Completion Requirements. The following requirements are mandatory provisions and are necessary for compliance with the standard.
- **6.7.2.1 Drawings.** Construction documents shall require that, within 90 days after the date of system acceptance, record drawings of the actual installation be provided to the building owner or the designated representative of the building owner. Record drawings shall include, as a minimum, the location and

performance data on each piece of equipment, general configuration of duct and pipe distribution system including sizes, and the terminal air or water design flow rates.

- **6.7.2.2 Manuals.** Construction documents shall require that an operating manual and a maintenance manual be provided to the building owner or the designated representative of the building owner within 90 days after the date of system acceptance. These manuals shall be in accordance with industry-accepted standards (see Informative Appendix E) and shall include, at a minimum, the following:
- a. Submittal data stating equipment size and selected options for each piece of equipment requiring maintenance.
- b. Operation manuals and maintenance manuals for each piece of equipment requiring maintenance, except equipment not furnished as part of the project. Required routine maintenance actions shall be clearly identified.
- c. Names and addresses of at least one service agency.
- d. HVAC controls system maintenance and calibration information, including wiring diagrams, schematics, and control sequence descriptions. Desired or field-determined setpoints shall be permanently recorded on control drawings at control devices or, for digital control systems, in programming comments.
- e. A complete narrative of how each system is intended to operate, including suggested setpoints.

6.7.2.3 System Balancing

- **6.7.2.3.1 General.** Construction documents shall require that all HVAC systems be balanced in accordance with generally accepted engineering standards (see Informative Appendix E). Construction documents shall require that a written balance report be provided to the building owner or the designated representative of the building owner for HVAC systems serving *zones* with a total conditioned area exceeding 5000 ft².
- **6.7.2.3.2 Air System Balancing.** Air systems shall be balanced in a manner to first minimize throttling losses. Then, for fans with *fan system power* greater than 1 hp, fan speed shall be adjusted to meet design flow conditions.
- **6.7.2.3.3 Hydronic System Balancing.** Hydronic systems shall be proportionately balanced in a manner to first minimize throttling losses; then the pump impeller shall be trimmed or pump speed shall be adjusted to meet design flow conditions.

Exceptions: Impellers need not be trimmed nor pump speed adjusted

a. for pumps with pump motors of 10 hp or less or

TABLE 6.5.9 Hot Gas Bypass Limitation

Rated Capacity	Maximum Hot Gas Bypass Capacity (% of Total Capacity)
≤240,000 Btu/h	50%
>240,000 Btu/h	25%

b. when throttling results in no greater than 5% of the nameplate horsepower draw, or 3 hp, whichever is greater, above that required if the impeller was trimmed.

6.7.2.4 System Commissioning. HVAC control systems shall be tested to ensure that control elements are calibrated, adjusted, and in proper working condition. For

projects larger than 50,000 ft² conditioned area, except warehouses and semiheated spaces, detailed instructions for commissioning HVAC systems (see Informative Appendix E) shall be provided by the designer in plans and specifications.

6.8 Minimum Equipment Efficiency Tables

6.8.1 Minimum Efficiency Requirement Listed Equipment—Standard Rating and Operating Conditions

TABLE 6.8.1A Electronically Operated Unitary Air Conditioners and Condensing Units— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Subcategory or Rating Condition	Minimum Efficiency ^a	Test Proce- dure ^b
Air conditioners,			Split system	10.0 SEER (before 1/23/2006) 13.0 SEER (as of 1/23/2006)	
air cooled	<65,000 Btu/h ^c	All	Single package	9.7 SEER (before 1/23/2006) 13.0 SEER (as of 1/23/2006)	
Through-the-wall,	200 000 Pv. # C		Split system	10.0 SEER (before 1/23/2006) 10.9 SEER(as of 1/23/2006) 12 SEER(as of 1/23/2010)	ARI 210/240
air cooled	≤30,000 Btu/h ^c	All	Single package	9.7 SEER (before 1/23/2006) 10.6 SEER(as of 1/23/2006) 12.0 SEER(as of 1/23/2010)	
	≥65,000 Btu/h and	Electric resistance (or none)	Split system and single package	10.3 EER (before 1/1/2010) 11.2 EER (as of 1/1/2010)	
	<135,000 Btu/h		10.1 EER (before 1/1/2010) 11.0 EER (as of 1/1/2010)		
	≥135,000 Btu/h and	Electric resistance (or none)	Split system and single package	9.7 EER (before 1/1/2010) 11.0 EER (as of 1/1/2010)	
	<240,000 Btu/h	All other	Split system and single package	9.5 EER (before 1/1/2010) 10.8 EER (as of 1/1/2010)	
Air conditioners, air cooled	≥240,000 Btu/h and	Electric resistance (or none)	Split system and single package	9.5 EER (before 1/1/2010) 10.0 EER (as of 1/1/2010) 9.7 IPLV	ARI 340/360
-	<760,000 Btu/h	All other	Split system and single package	9.3 EER (before 1/1/2010) 9.8 EER (as of 1/1/2010) 9.5 IPLV	
	V200000 7 1	Electric resistance (or none)	Split system and single package	9.2 EER (before 1/1/2010) 9.7 EER (as of 1/1/2010) 9.4 IPLV	
	≥760,000 Btu/h	All other	Split system and single package	9.0 EER (as of 1/1/2010) 9.5 EER (as of 1/1/2010) 9.2 IPLV	

TABLE 6.8.1A Electronically Operated Unitary Air Conditioners and Condensing Units— **Minimum Efficiency Requirements** (continued)

		•	` /		
Equipment Type	Size Category	Heating Section Type	Sub-Category or Rating Condition	Minimum Efficiency ^a	Test Proce- dure ^b
	<65,000 Btu/h	All	Split system and single package	12.1 EER	ARI 210/240
Air conditioners, water and evaporatively cooled	≥65,000 Btu/h and <135,000 Btu/h	Electric resistance (or none)	Split system and single package	11.5 EER	
		All other	Split system and single package	11.3 EER	
	≥135,000 Btu/h and <240,000 Btu/h	Electric resistance (or none)	Split system and single package	11.0 EER	ARI 340/360
		All other	Split system and single package	10.8 EER	
	. • 10 000 D. (I	Electric resistance (or none)	Split system and single package	11.0 EER 10.3 IPLV	
	≥240,000 Btu/h	All other Sp		10.8 EER 10.1 IPLV	
Condensing units, air cooled	≥135,000 Btu/h	-		10.1 EER 11.2 IPLV	— ARI
Condensing units, water or evaporatively cooled	≥135,000 Btu/h	-		13.1 EER 13.1 IPLV	365

^a IPLVs and part-load rating conditions are only applicable to equipment with capacity modulation.

b Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure. c Single-phase, air-cooled air conditioners <65,000 Btu/h are regulated by NAECA. SEER values are those set by NAECA.

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps— Minimum Efficiency Requirements

Equipment Type	Size Category	Heating Section Type	Subcategory or Rating Condition	Minimum Efficiency ^a	Test Proce- dure ^b	
Air cooled	<65,000 Btu/h ^c	All	Split system	10.0 SEER (before 1/23/2006) 13.0 SEER (as of 1/23/2006)		
(cooling mode)	<03,000 Btt/II	All	Single package	9.7 SEER (before 1/23/2006) 13.0 SEER (as of 1/23/2006)		
Through-the-wall	≤30,000 Btu/h ^c		Split system	10.0 SEER (before 1/23/2006) 10.9 SEER (as of 1/23/2006) 12 SEER (as of 1/23/2010)	ARI 210/240	
(air cooled, cooling mode)	≥30,000 Bttl/II	All	Single package	9.7 SEER (before 1/23/2006) 10.6 SEER (as of 1/23/2006) 12.0 SEER (as of 1/23/2010)		
	≥65,000 Btu/h and	Electric resistance (or none)	Split system and single package	10.1 EER (before 1/1/2010) 11.0 EER (as of 1/1/2010)		
	<135,000 Btu/h	All other	Split system and single package	9.9 EER (before 1/1/2010) 10.8 EER (as of 1/1/2010)		
	≥135,000 Btu/h and	Electric resistance (or none)	Split system and single package	9.3 EER (before 1/1/2010) 10.6 EER (as of 1/1/2010)		
Air cooled (cooling mode)	<240,000 Btu/h	All other	Split system and single package	n and 9.1 EER (before 1/1/2010)		
		Electric resistance (or none)	Split system and single package	9.0 EER (before 1/1/2010) 9.5 EER (as of 1/1/2010) 9.2 IPLV		
	≥240,000 Btu/h	Shift system and	8.8 EER (before 1/1/2010) 9.3 EER (as of 1/1/2010) 9.0 IPLV			
	<17,000 Btu/h	All	86°F entering water	11.2 EER	ISO- 13256-1	
Water source (cooling mode)	≥17,000 Btu/h and <65,000 Btu/h	All	86°F entering water	12.0 EER	ISO- 13256-1	
	≥65,000 Btu/h and <135,000 Btu/h	All	86°F entering water	12.0 EER	ISO- 13256-1	
Groundwater source (cooling mode)	<135,000 Btu/h	All	59°F entering water	16.2 EER	ISO- 13256-1	
Ground source (cooling mode)	<135,000 Btu/h	All	77°F entering water	13.4 EER	ISO- 13256-1	
Air cooled (heating mode)	<65,000 Btu/h ^c		Split system	6.8 HSPF (before 1/23/2006) 7.7 HSPF (as of 1/23/2006)		
	(cooling capacity)	_	Single package	6.6 HSPF (before 1/23/2006) 7.7 HSPF (as of 1/23/2006)		
Through-the-wall, (air cooled, heating mode)	≤30,000 Btu/h ^c	_	Split system	6.8 HSPF (before 1/23/2006) 7.1 HSPF (as of 1/23/2006) 7.4 HSPF (as of 1/23/2010)	ARI 210/ 240	
	(cooling capacity)	—	Single package	6.6 HSPF (before 1/23/2006) 7.0 HSPF (as of 1/23/2006) 7.4 HSPF (as of 1/23/2010)		

TABLE 6.8.1B Electrically Operated Unitary and Applied Heat Pumps— **Minimum Efficiency Requirements** (continued)

Size Category	Heating Section Type	Subcategory or Rating Condition	Minimum Efficiency ^a	Test Proce- dure ^b
≥65,000 Btu/h and		47°F db/43°F wb outdoor air	3.2 COP (before 1/1/2010) 3.3 COP (as of 1/1/2010)	
<135,000 Btu/n (cooling capacity)	_	17°F db/15°F wb outdoor air	2.2 COP	ARI 340/
≥135,000 Btu/h	_	47°F db/43°F wb outdoor air	3.1 COP (before 1/1/2010) 3.2 COP (as of 1/1/2010)	360
(cooling capacity)		17°F db/15°F wb outdoor air	2.0 COP	
<135,000 Btu/h (cooling capacity)	_	68°F entering water	4.2 COP	ISO- 13256-1
<135,000 Btu/h (cooling capacity)	_	50°F entering water	3.6 COP	ISO- 13256-1
<135,000 Btu/h (cooling capacity)	_	32°F entering water	3.1 COP	ISO- 13256-1
	≥65,000 Btu/h and <135,000 Btu/h (cooling capacity) ≥135,000 Btu/h (cooling capacity) <135,000 Btu/h (cooling capacity) <135,000 Btu/h (cooling capacity) <135,000 Btu/h	Size Category Section Type ≥65,000 Btu/h and <135,000 Btu/h (cooling capacity) ≥135,000 Btu/h (cooling capacity) <135,000 Btu/h (cooling capacity) <135,000 Btu/h (cooling capacity) <135,000 Btu/h (cooling capacity) <135,000 Btu/h (cooling capacity)	Size Category Section Type Rating Condition ≥65,000 Btu/h and 47°F db/43°F wb outdoor air (cooling capacity) 17°F db/15°F wb outdoor air ≥135,000 Btu/h (cooling capacity) 47°F db/43°F wb outdoor air <135,000 Btu/h (cooling capacity)	Size Category Section Type Rating Condition Efficiency ^a ≥65,000 Btu/h and <135,000 Btu/h (cooling capacity)

^a IPLVs and part-load rating conditions are only applicable to equipment with capacity modulation.

TABLE 6.8.1C Water Chilling Packages-Minimum Efficiency Requirements

Equipment Type	Size Category	Subcategory or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b	
Air cooled, with condenser, electrically operated	All capacities	_	2.80 COP 3.05 IPLV		
Air cooled, without condenser, electrically operated	All capacities	_	3.10 COP 3.45 IPLV	ARI 550/590	
Water cooled, electrically operated, positive displacement (reciprocating)	All capacities	_	4.20 COP 5.05 IPLV	ARI 550/590	
Water cooled, —	<150 tons	_	4.45 COP 5.20 IPLV		
electrically operated, positive displacement	≥150 tons and <300 tons	_	4.90 COP 5.60 IPLV	ARI 550/590	
(rotary screw and scroll)	≥300 tons	_	5.50 COP 6.15 IPLV	-	
	<150 tons	_	5.00 COP 5.25 IPLV		
Water cooled, electrically operated, centrifugal	≥150 tons and <300 tons	_	5.55 COP 5.90 IPLV	ARI 550/590	
-	≥300 tons	_	6.10 COP 6.40 IPLV	_	
Air-cooled absorption single effect	All capacities	_	0.60 COP		
Water-cooled absorption single effect	All capacities	_	0.70 COP	-	
Absorption double effect, indirect-fired	All capacities	_	1.00 COP 1.05 IPLV	— ARI 560	
Absorption double effect, direct-fired	All capacities	_	1.00 COP 1.00 IPLV	_	

^a The chiller equipment requirements do not apply for chillers used in low-temperature applications where the design leaving fluid temperature is <40°F. ^b Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

^b Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

c Single-phase, air-cooled heat pumps <65,000 Btu/h are regulated by NAECA. SEER and HSPF values are those set by NAECA

Electrically Operated Packaged Terminal Air Conditioners, Packaged Terminal Heat Pumps, Single-Package Vertical Air Conditioners, Single-Package Vertical Heat Pumps, Room Air Conditioners, and Room Air-Conditioner Heat Pumps—Minimum Efficiency Requirements

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Minimum Efficiency	Test Procedure ^a
PTAC (cooling mode) new construction	All capacities	95°F db outdoor air	$12.5 - (0.213 \times \text{Cap/}1000)^{\text{c}} \text{ EER}$	
PTAC (cooling mode) replacements ^b	All capacities	95°F db outdoor air	$10.9 - (0.213 \times \text{Cap/}1000)^{\text{c}} \text{ EER}$	_
PTHP (cooling mode) new construction	All capacities	95°F db outdoor air	$12.3 - (0.213 \times \text{Cap/1000})^{c}$ EER	- ADI 210/200
PTHP (cooling mode) replacements ^b	All capacities	95°F db outdoor air	$10.8 - (0.213 \times \text{Cap/1000})^{c}$ EER	— ARI 310/380
PTHP (heating mode) new construction	All capacities		$3.2 - (0.026 \times \text{Cap/1000})^{\text{c}} \text{COP}$	
PTHP (heating mode) replacements ^b	All capacities		$2.9 - (0.026 \times \text{Cap/1000})^{\text{c}} \text{COP}$	_
	<65,000 Btu/h	95°F db/75°F wb outdoor air	9.0 EER	
SPVAC (cooling mode)	≥65,000 Btu/h and <135,000 Btu/h	95°F db/75°F wb outdoor air	8.9EER	
	≥135,000 Btu/h and <240,000 Btu/h	95°F db/75°F wb outdoor air	8.6 EER	
	<65,000 Btu/h	95°F db/75°F wb outdoor air	9.0 EER	
SPVHP (cooling mode)	≥65,000 Btu/h and <135,000 Btu/h	95°F db/75°F wb outdoor air	8.9EER	ARI 390
	≥135,000 Btu/h and <240,000 Btu/h	95°F db/75°F wb outdoor air	8.6 EER	
	<65,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP	
SPVHP (heating mode)	≥65,000 Btu/h and <135,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP	
	≥135,000 Btu/h and <240,000 Btu/h	47°F db/43°F wb outdoor air	2.9 COP	
	<6000 Btu/h		9.7 SEER	
	≥6000 Btu/h and <8000 Btu/h		9.7 SEER	
Room air conditioners, with louvered sides	≥8000 Btu/h and <14,000 Btu/h	_	9.8 EER	
	≥14,000 Btu/h and <20,000 Btu/h		9.7 SEER	
	≥20,000 Btu/h		8.5 EER	
	<8000 Btu/h		9.0 EER	
Room air conditioners, without louvered sides	≥8000 Btu/h and <20,000 Btu/h	_	8.5 EER	ANSI/AHAM RAC-1
	≥20,000 Btu/h		8.5 EER	
coom air-conditioner heat pumps	<20,000 Btu/h		9.0 EER	
with louvered sides	≥20,000 Btu/h		8.5 EER	
toom air-conditioner heat pumps	<14,000 Btu/h		8.5 EER	
without louvered sides	≥14,000 Btu/h		8.0 EER	
Room air conditioner, casement only	All capacities		8.7 EER	_
Room air conditioner, casement–slider	All capacities	_	9.5 EER	

^a Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

^b Replacement units must be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW CONSTRUCTION

PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 in. high and less than 42 in. wide. cap means the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation.

TABLE 6.8.1E Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units,
Warm Air Duct Furnaces and Unit Heaters

Size Category	Subcategory or Rating Condition	Minimum Efficiency ^a	Test Procedure ^b
(Input)	Tuning Condition		
<225,000 Btu/h		78% AFUE or 80% $E_t^{\rm f}$	DOE 10 CFR Part 430 or ANSI Z21.47
>225 000 Ptu/h	Maximum capacity ^d	800/ F f	ANSI Z21.47
2223,000 Btu/II		8070 E _C	ANSI Z21.47
<225,000 Btu/h		78% AFUE or 80% E_t^d	DOE 10 CFR Part 430 or UL 727
,	Maximum capacity ^c	ı	
≥225,000 Btu/h	1 2	81% E _t e	UL 727
	3.5.1	oook z gh	13797 700 0
All capacities	Maximum capacity ^u	$80\% E_c^{g,n}$	ANSI Z83.8
All capacities	Maximum capacity ^d	$80\% E_c^{\mathrm{g,h}}$	ANSI Z83.8
All capacities	Maximum capacity ^d	80% $E_c^{\rm f,h}$	UL 731
	(Input) <225,000 Btu/h ≥225,000 Btu/h <225,000 Btu/h ≥225,000 Btu/h All capacities All capacities	(Input) Rating Condition <225,000 Btu/h	(Input) Rating Condition Winimum Efficiency <225,000 Btu/h

 $^{^{}a}E_{t}$ = thermal *efficiency*. See test procedure for detailed discussion.

TABLE 6.8.1F Gas- and Oil-Fired Boilers, Minimum Efficiency Requirements

Equipment Type ^a	Subcategory or Rating Condition	Size Category (Input)	Minimum Efficiency ^{b,c}	Efficiency as of 3/2/2010 (Date 3 yrs after ASHRAE Board Approval)	Efficiency as of 3/2/2020 (Date 13 yrs after ASHRAE Board Approval)	Test Procedure
		<300,000 Btu/h	80% AFUE	80% AFUE	80% AFUE	10 CFR Part 43
	Gas-fired	≥300,000 Btu/h and ≤2,500,000 Btu/h ^d	75% E _t	$80\%~E_t$	80% E _t	10 CFR Part 43
Boilers, hot water		>2,500,000 Btu/h ^a	$80\% E_c$	$82\%~E_c$	82% E _c	
	<300,000 Btu/h	80% AFUE	80% AFUE	80% AFUE	10 CFR Part 43	
	Oil-fired ^e	≥300,000 Btu/h and ≤2,500,000 Btu/h ^d	$78\%~E_t$	82% E _t	$\% E_t$ 82% E_t 1	
		>2,500,000 Btu/h ^a	83% E _c	$84\%~E_c$	84% E _c	
	Gas-fired	<300,000 Btu/h	75% AFUE	75% AFUE	75% AFUE	10 CFR Part 43
	Gas-fired— all, except	≥300,000 Btu/h and ≤2,500,000 Btu/h ^d	75% E _t	$79\% E_t$	79% E _t	
	natural draft	>2,500,000 Btu/h ^a	$80\% E_c$	$79\%~E_t$	$79\%~E_t$	10 CED D + 42
Boilers,	Gas-fired—	≥300,000 Btu/h and ≤2,500,000 Btu/h ^d	75% E _t	77% E_t	79% E _t	10 CFR Part 43
steam	natural draft	>2,500,000 Btu/h ^a	$80\%~E_c$	77% E_t	79% E _t	
•		<300,000 Btu/h	80% AFUE	80% AFUE	80% AFUE	10 CFR Part 43
	Oil-fired ^e	≥300,000 Btu/h and ≤2,500,000 Btu/h ^d	$78\%~E_t$	81% E _t	81% E _t	10 CFR Part 43
		>2,500,000 Btu/h ^a	83% E _c	81% E _t	$81\% E_t$	

^a These requirements apply to boilers with rated input of 8,000,000 Btu/h or less that are not packaged boilers and to all packaged boilers. Minimum efficiency requirements for boilers cover all capacities of packaged boilers.

b Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

^c Minimum and maximum ratings as provided for and allowed by the unit's controls.

dCombination units not covered by NAECA (three-phase power or cooling capacity greater than or equal to 65,000 Btu/h) may comply with either rating.

^e E_t = thermal *efficiency*. Units must also include an interrupted or intermittent ignition device (IID), have jacket losses not exceeding 0.75% of the input rating, and have either power venting or a flue damper. A vent damper is an acceptable alternative to a flue damper for those furnaces where combustion air is drawn from the conditioned space.

 $E_c = \text{combustion } efficiency (100\% \text{ less flue losses})$. See test procedure for detailed discussion.

h As of August 8, 2008, according to the Energy Policy Act of 2005, units must also include an interrupted or intermittent ignition device (IID) and have either power venting or an automatic flue damper. A vent damper is an acceptable alternative to a flue damper for those unit heaters where combustion air is drawn from the conditioned space.

b E_c = combustion efficiency (100% less flue losses). See reference document for detailed information.

 $^{^{\}rm c}$ E_t = thermal efficiency. See reference document for detailed information.

d Maximum capacity - minimum and maximum ratings as provided for and allowed by the unit's controls.

e Includes oil-fired (residual).

TABLE 6.8.1G Performance Requirements for Heat Rejection Equipment

Equipment Type	Total System Heat Rejection Capacity at Rated Conditions	Subcategory or Rating Condition	Performance Required ^{a,b}	Test Procedure ^c
Propeller or axial fan cooling towers	All	95°F entering water 85°F leaving water 75°F wb <i>outdoor air</i>	≥38.2 gpm/hp	CTI ATC-105 and CTI STD-201
Centrifugal fan cooling towers	All	95°F entering water 85°F leaving water 75°F wb <i>outdoor air</i>	≥20.0 gpm/hp	CTI ATC-105 and CTI STD-201
Air-cooled condensers	All	125°F condensing temperature R-22 test fluid 190°F entering gas temperature 15°F subcooling 95°F entering db	≥176,000 Btu/h·hp	ARI 460

^a For purposes of this table, cooling tower performance is defined as the maximum flow rating of the tower divided by the fan nameplate rated motor power.

^b For purposes of this table, air-cooled condenser performance is defined as the heat rejected from the refrigerant divided by the fan nameplate rated motor power.

^c Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

TABLE 6.8.1H Minimum Efficiencies for Centrifugal Chillers <150 tons

Centrifugal Chillers <150 tons

 $COP_{std} = 5.00$; $IPLV_{std} = 5.25$

							Cond	enser Flov	v Rate					
			2 gp	m/ton	2.5 g _J	pm/ton	3 gp	m/ton	4 gp	m/ton	5 gp	m/ton	6 gp	m/ton
Leaving Chilled- Water Tempera- ture (°F)	Entering Condenser- Water Tempera- ture (°F)	LIFT ^a (°F)	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c
40	75	35	5.11	5.35	5.33	5.58	5.48	5.73	5.67	5.93	5.79	6.06	5.88	6.15
40	80	40	4.62	4.83	4.92	5.14	5.09	5.32	5.27	5.52	5.38	5.63	5.45	5.70
40	85	45	3.84	4.01	4.32	4.52	4.58	4.79	4.84	5.06	4.98	5.20	5.06	5.29
41	75	34	5.19	5.43	5.41	5.66	5.56	5.81	5.75	6.02	5.89	6.16	5.99	6.26
41	80	39	4.73	4.95	5.01	5.24	5.17	5.41	5.35	5.60	5.46	5.71	5.53	5.78
41	85	44	4.02	4.21	4.46	4.67	4.70	4.91	4.94	5.17	5.06	5.30	5.14	5.38
42	75	33	5.27	5.51	5.49	5.74	5.64	5.90	5.85	6.12	6.00	6.27	6.11	6.39
42	80	38	4.84	5.06	5.10	5.33	5.25	5.49	5.43	5.67	5.53	5.79	5.61	5.87
42	85	43	4.19	4.38	4.59	4.80	4.81	5.03	5.03	5.26	5.15	5.38	5.22	5.46
43	75	32	5.35	5.59	5.57	5.82	5.72	5.99	5.95	6.23	6.11	6.39	6.23	6.52
43	80	37	4.94	5.16	5.18	5.42	5.32	5.57	5.50	5.76	5.62	5.87	5.70	5.96
43	85	42	4.35	4.55	4.71	4.93	4.91	5.13	5.12	5.35	5.23	5.47	5.30	5.54
44	75	31	5.42	5.67	5.65	5.91	5.82	6.08	6.07	6.34	6.24	6.53	6.37	6.67
44	80	36	5.03	5.26	5.26	5.50	5.40	5.65	5.58	5.84	5.70	5.96	5.79	6.05
44	85	41	4.49	4.69	4.82	5.04	5.00	5.25	5.20	5.43	5.30	5.55	5.38	5.62
45	75	30	5.50	5.75	5.74	6.00	5.92	6.19	6.19	6.47	6.38	6.68	6.53	6.83
45	80	35	5.11	5.35	5.33	5.58	5.48	5.73	5.67	5.93	5.79	6.06	5.88	6.15
45	85	40	4.62	4.83	4.92	5.14	5.09	5.32	5.27	5.52	5.38	5.63	5.45	5.70
46	75	29	5.58	5.84	5.83	6.10	6.03	6.30	6.32	6.61	6.54	6.84	6.70	7.00
46	80	34	5.19	5.43	5.41	5.66	5.56	5.81	5.75	6.02	5.89	6.16	5.99	6.26
46	85	39	4.73	4.95	5.01	5.24	5.17	5.41	5.35	5.60	5.46	5.71	5.53	5.78
47	75	28	5.66	5.92	5.93	6.20	6.15	6.43	6.47	6.77	6.71	7.02	6.88	7.20
47	80	33	5.27	5.51	5.49	5.74	5.64	5.90	5.85	6.12	6.00	6.27	6.11	6.39
47	85	38	4.84	5.06	5.10	5.33	5.25	5.49	5.43	5.67	5.53	5.79	5.61	5.87
48	75	27	5.75	6.02	6.04	6.32	6.28	6.56	6.64	6.94	6.89	7.21	7.09	7.41
48	80	32	5.35	5.59	5.57	5.82	5.72	5.99	5.95	6.23	6.11	6.39	6.23	6.52
48	85	37	4.94	5.16	5.18	5.42	5.32	5.57	5.50	5.76	5.62	5.87	5.70	5.96
Co	ondenser Δ <i>T</i> ^b		14	1.04	11	1.23	9	.36	7	.02	5.	.62	4	.68

^a LIFT = entering condenser water temperature – leaving chilled-water temperature (°F)

b Condenser ΔT = leaving condenser-water temperature (°F) – entering condenser-water temperature (°F) c All NPLV values shown are NPLV except at conditions of 3 gpm/ton condenser flow rate with 44°F leaving chilled-water temperature and 85°F entering condenser-water temperature, which is IPLV

temperature, which is FLV $K_{adj} = 6.1507 - 0.30244(X) + 0.0062692(X)^2 - 0.000045595(X)^3$ where $X = \text{Condenser } \Delta T + \text{LIFT}$

 $COP_{adj} = K_{adj} \cdot COP_{std}$

TABLE 6.8.1I Minimum Efficiencies for Centrifugal Chillers ≥150 tons, < 300 tons

Centrifugal Chillers ≥150 tons, <300 tons

 $COP_{std} = 5.55$; $IPLV_{std} = 5.90$

							Cond	enser Flov	v Rate					
			2 gp	m/ton	2.5 g _J	pm/ton	3 gp	m/ton	4 gp	m/ton	5 gp	m/ton	6 gp	m/ton
Leaving Chilled- Water Tempera- ture (°F)	Entering Condenser- Water Tempera- ture (°F)	LIFT ^a (°F)	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c
40	75	35	5.65	6.03	5.90	6.29	6.05	6.46	6.26	6.68	6.40	6.83	6.51	6.94
40	80	40	5.10	5.44	5.44	5.80	5.62	6.00	5.83	6.22	5.95	6.35	6.03	6.43
40	85	45	4.24	4.52	4.77	5.09	5.06	5.40	5.35	5.71	5.50	5.87	5.59	5.97
41	75	34	5.74	6.13	5.80	6.38	6.14	6.55	6.36	6.79	6.51	6.95	6.62	7.06
41	80	39	5.23	5.58	5.54	5.91	5.71	6.10	5.91	6.31	6.03	6.44	6.11	6.52
41	85	44	4.45	4.74	4.93	5.26	5.19	5.54	5.46	5.82	5.60	5.97	5.69	6.07
42	75	33	5.83	6.22	6.07	6.47	6.23	6.65	6.47	6.90	6.63	7.07	6.75	7.20
42	80	38	5.35	5.71	5.64	6.01	5.80	6.19	6.00	6.40	6.12	6.53	6.20	6.62
42	85	43	4.63	4.94	5.08	5.41	5.31	5.67	5.56	5.93	5.69	6.07	5.77	6.16
43	75	32	5.91	6.31	6.15	6.56	6.33	6.75	6.58	7.02	6.76	7.21	6.89	7.35
43	80	37	5.46	5.82	5.73	6.11	5.89	6.28	6.08	6.49	6.21	6.62	6.30	6.72
43	85	42	4.81	5.13	5.21	5.55	5.42	5.79	5.66	6.03	5.78	6.16	5.86	6.25
44	75	31	6.00	6.40	6.24	6.66	6.43	6.86	6.71	7.15	6.90	7.36	7.05	7.52
44	80	36	5.56	5.93	5.81	6.20	5.97	6.37	6.17	6.58	6.30	6.72	6.40	6.82
44	85	41	4.96	5.29	5.33	5.68	5.55	5.90	5.74	6.13	5.86	6.26	5.94	6.34
45	75	30	6.08	6.49	6.34	6.76	6.54	6.98	6.84	7.30	7.06	7.53	7.22	7.70
45	80	35	5.65	6.03	5.90	6.29	6.05	6.46	6.26	6.68	6.40	6.83	6.51	6.94
45	85	40	5.10	5.44	5.44	5.80	5.62	6.00	5.83	6.22	5.95	6.35	6.03	6.43
46	75	29	6.17	6.58	6.44	6.87	6.66	7.11	6.99	7.46	7.23	7.71	7.40	7.90
46	80	34	5.74	6.13	5.80	6.38	6.14	6.55	6.36	6.79	6.51	6.95	6.62	7.06
46	85	39	5.23	5.58	5.54	5.91	5.71	6.10	5.91	6.31	6.03	6.44	6.11	6.52
47	75	28	6.26	6.68	6.56	6.99	6.79	7.24	7.16	7.63	7.42	7.91	7.61	8.11
47	80	33	5.83	6.21	6.07	6.47	6.23	6.64	6.47	6.90	6.63	7.07	6.75	7.20
47	85	38	5.35	5.70	5.64	6.01	5.80	6.19	6.00	6.40	6.12	6.52	6.20	6.61
48	75	27	6.36	6.78	6.68	7.12	6.94	7.40	7.34	7.82	7.62	8.13	7.83	8.35
48	80	32	5.91	6.30	6.15	6.56	6.33	6.75	6.58	7.02	6.76	7.21	6.89	7.35
48	85	37	5.46	5.82	5.73	6.10	5.89	6.28	6.08	6.49	6.21	6.62	6.30	6.71
Co	ondenser Δ <i>T</i> ^b		14	1.04	11	1.23	9	.36	7	.02	5	.62	4	.68

 $^{^{}a}_{\text{, }} \text{ LIFT} = \text{entering condenser-water temperature} - \text{leaving chilled-water temperature} \ (^{\circ}\text{F})$

[&]quot;LIF1 = entering condenser-water temperature – leaving chilled-water temperature (°F) b Condenser ΔT = leaving condenser-water temperature (°F) – entering condenser-water temperature (°F) c All NPLV values shown are NPLV except at conditions of 3 gpm/ton condenser flow rate with 44°F leaving chilled-water temperature and 85°F entering condenser-water temperature, which is IPLV $K_{adj} = 6.1507 - 0.30244(X) + 0.0062692(X)^2 - 0.000045595(X)^3$ where X = C ondenser $\Delta T + L$ IFT $COP_{adj} = K_{adj} \cdot COP_{std}$

Minimum Efficiencies for Centrifugal Chillers ≥300 tons **TABLE 6.8.1J**

Centrifugal Chillers ≥300 tons

 $COP_{std} = 6.10$; $IPLV_{std} = 6.40$

							Cond	enser Flov	v Rate					
			2 gp	m/ton	2.5 g _j	pm/ton	3 gp	m/ton	4 gp	m/ton	5 gp	m/ton	6 gp	m/ton
Leaving Chilled- Water Tempera- ture (°F)	Entering Condenser- Water Tempera- ture (°F)	LIFT ^a (°F)	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c	СОР	NPLV ^c
40	75	35	6.23	6.55	6.50	6.83	6.68	7.01	6.91	7.26	7.06	7.42	7.17	7.54
40	80	40	5.63	5.91	6.00	6.30	6.20	6.52	6.43	6.76	6.56	6.89	6.65	6.98
40	85	45	4.68	4.91	5.26	5.53	5.58	5.86	5.90	6.20	6.07	6.37	6.17	6.48
41	75	34	6.33	6.65	6.60	6.93	6.77	7.12	7.02	7.37	7.18	7.55	7.30	7.67
41	80	39	5.77	6.06	6.11	6.42	6.30	6.62	6.52	6.85	6.65	6.99	6.74	7.08
41	85	44	4.90	5.15	5.44	5.71	5.72	6.01	6.02	6.33	6.17	6.49	6.27	6.59
42	75	33	6.43	6.75	6.69	7.03	6.87	7.22	7.13	7.49	7.31	7.68	7.44	7.82
42	80	38	5.90	6.20	6.21	6.53	6.40	6.72	6.61	6.95	6.75	7.09	6.84	7.19
42	85	43	5.11	5.37	5.60	5.88	5.86	6.16	6.13	6.44	6.28	6.59	6.37	6.69
43	75	32	6.52	6.85	6.79	7.13	6.98	7.33	7.26	7.63	7.45	7.83	7.60	7.98
43	80	37	6.02	6.32	6.31	6.63	6.49	6.82	6.71	7.05	6.85	7.19	6.94	7.30
43	85	42	5.30	5.57	5.74	6.03	5.98	6.28	6.24	6.55	6.37	6.70	6.46	6.79
44	75	31	6.61	6.95	6.89	7.23	7.09	7.45	7.40	7.77	7.61	8.00	7.77	8.16
44	80	36	6.13	6.44	6.41	6.73	6.58	6.92	6.81	7.15	6.95	7.30	7.05	7.41
44	85	41	5.47	5.75	5.87	6.17	6.10	6.40	6.33	6.66	6.47	6.79	6.55	6.89
45	75	30	6.71	7.05	6.99	7.35	7.21	7.58	7.55	7.93	7.78	8.18	7.96	8.36
45	80	35	6.23	6.55	6.50	6.83	6.68	7.01	6.91	7.26	7.06	7.42	7.17	7.54
45	85	40	5.63	5.91	6.00	6.30	6.20	6.52	6.43	6.76	6.56	6.89	6.65	6.98
46	75	29	6.80	7.15	7.11	7.47	7.35	7.72	7.71	8.10	7.97	8.37	8.16	8.58
46	80	34	6.33	6.65	6.60	6.93	6.77	7.12	7.02	7.37	7.18	7.55	7.30	7.67
46	85	39	5.77	6.06	6.11	6.42	6.30	6.62	6.52	6.85	6.65	6.99	6.74	7.08
47	75	28	6.91	7.26	7.23	7.60	7.49	7.87	7.89	8.29	8.18	8.59	8.39	8.82
47	80	33	6.43	6.75	6.69	7.03	6.87	7.22	7.13	7.49	7.31	7.68	7.44	7.82
47	85	38	5.90	6.20	6.21	6.53	6.40	6.72	6.61	6.95	6.75	7.09	6.84	7.19
48	75	27	7.01	7.37	7.36	7.74	7.65	8.04	8.09	8.50	8.41	8.83	8.64	9.08
48	80	32	6.52	6.85	6.79	7.13	6.98	7.33	7.26	7.63	7.45	7.83	7.60	7.98
48	85	37	6.02	6.32	6.31	6.63	6.49	6.82	6.71	7.05	6.85	7.19	6.94	7.30
С	ondenser Δ <i>T</i> ^b		14	1.04	11	1.23	9.	.36	7	.02	5	.62	4	.68

^a LIFT = entering condenser-water temperature – leaving chilled-water temperature (°F)

^b Condenser ΔT = leaving condenser-water temperature (°F) – entering condenser-water temperature (°F)

^c All NPLV values shown are NPLV except at conditions of 3 gpm/ton condenser flow rate with 44°F leaving chilled-water temperature and 85°F entering condenser-water temperature ature, which is IPLV $K_{adj} = 6.1507 - 0.30244(X) + 0.0062692(X)^2 - 0.000045595(X)^3$ where $X = \text{Condenser } \Delta T + \text{LIFT } \text{COP}_{adj} = K_{adj} \cdot \text{COP}_{std}$

6.8.2 Duct Insulation Tables

TABLE 6.8.2A Minimum Duct Insulation R-Value, a Cooling and Heating Only Supply Ducts and Return Ducts

				Duct Location	n		
Climate Zone	Exterior	Ventilated Attic	Unvented Attic Above Insulated Ceiling	Unvented Attic with Roof Insulation ^a	Unconditioned Space ^b	Indirectly Conditioned Space ^c	Buried
			Hea	ting-Only Ducts			
1, 2	none	none	none	none	none	none	none
3	R-3.5	none	none	none	none	none	none
4	R-3.5	none	none	none	none	none	none
5	R-6	R-3.5	none	none	none	none	R-3.5
6	R-6	R-6	R-3.5	none	none	none	R-3.5
7	R-8	R-6	R-6	none	R-3.5	none	R-3.5
8	R-8	R-8	R-6	none	R-6	none	R-6
			Coo	ling-Only Ducts			
1	R-6	R-6	R-8	R-3.5	R-3.5	none	R-3.5
2	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5
3	R-6	R-6	R-6	R-3.5	R-1.9	none	none
4	R-3.5	R-3.5	R-6	R-1.9	R-1.9	none	none
5, 6	R-3.5	R-1.9	R-3.5	R-1.9	R-1.9	none	none
7, 8	R-1.9	R-1.9	R-1.9	R-1.9	R-1.9	none	none
			I	Return Ducts			
1 to 8	R-3.5	R-3.5	R-3.5	none	none	none	none

a Insulation R-values, measured in (h·ft².ºF)/Btu, are for the insulation as installed and do not include film resistance. The required minimum thicknesses do not consider water vapor transmission and possible surface condensation. Where exterior walls are used as plenum walls, wall insulation shall be as required by the most restrictive condition of Section 6.4.4.2 or Section 5. Insulation resistance measured on a horizontal plane in accordance with ASTM C518 at a mean temperature of 75°F at the installed thickness.

TABLE 6.8.2B Minimum Duct Insulation R-Value, a Combined Heating and Cooling Supply Ducts and Return Ducts

				Duct Locatio	n		
Climate Zone	Exterior	Ventilated Attic	Unvented Attic Above Insulated Ceiling	Unvented Attic with Roof Insulation ^a	Unconditioned Space ^b	Indirectly Conditioned Space ^c	Buried
			S	Supply Ducts			
1	R-6	R-6	R-8	R-3.5	R-3.5	none	R-3.5
2	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5
3	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5
4	R-6	R-6	R-6	R-3.5	R-3.5	none	R-3.5
5	R-6	R-6	R-6	R-1.9	R-3.5	none	R-3.5
6	R-8	R-6	R-6	R-1.9	R-3.5	none	R-3.5
7	R-8	R-6	R-6	R-1.9	R-3.5	none	R-3.5
8	R-8	R-8	R-8	R-1.9	R-6	none	R-6
				Return Ducts			
1 to 8	R-3.5	R-3.5	R-3.5	none	none	none	none

a Insulation R-values, measured in (h·ft².ºF)/Btu, are for the insulation as installed and do not include film resistance. The required minimum thicknesses do not consider water vapor transmission and possible surface condensation. Where exterior walls are used as plenum walls, wall insulation shall be as required by the most restrictive condition of Section 6.4.4.2 or Section 5. Insulation resistance measured on a horizontal plane in accordance with ASTM C518 at a mean temperature of 75°F at the installed thickness.

^bIncludes crawlspaces, both ventilated and nonventilated.

^c Includes return air plenums with or without exposed roofs above.

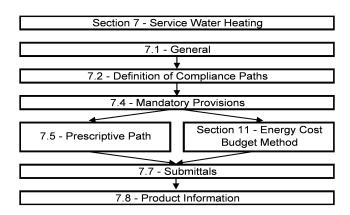
^bIncludes crawlspaces, both ventilated and nonventilated.

^c Includes return air plenums with or without exposed roofs above.

TABLE 6.8.3 Minimum Pipe Insulation Thickness^a

Fluid Design	Insulation C	onductivity	Nominal Pipe or Tube Size (in.)						
Operating Temp. Range (°F)	Conductivity Btu·in./(h·ft ² .°F)	Mean Rating Temp. °F	<1	1 to <1-1/2	1-1/2 to <4	4 to <8	≥8		
	Heating	Systems (Steam, Ste	am Conde	nsate, and Hot Wat	er) ^{b,c}				
>350	0.32 - 0.34	250	2.5	3.0	3.0	4.0	4.0		
251 - 350	0.29 - 0.32	200	1.5	2.5	3.0	3.0	3.0		
201 - 250	0.27 - 0.30	150	1.5	1.5	2.0	2.0	2.0		
141 - 200	0.25 - 0.29	125	1.0	1.0	1.0	1.5	1.5		
105 – 140	0.22 - 0.28	100	0.5	0.5	1.0	1.0	1.0		
		Domestic and Ser	vice Hot-V	ater Systems					
105+	0.22 - 0.28	100	0.5	0.5	1.0	1.0	1.0		
	Cooli	ing Systems (Chilled	Water, Bri	ne, and Refrigeran	t) ^d				
40 - 60	0.22 - 0.28	100	0.5	0.5	1.0	1.0	1.0		
<40	0.22 - 0.28	100	0.5	1.0	1.0	1.0	1.5		

^a For insulation outside the stated conductivity range, the minimum thickness (*T*) shall be determined as follows: $T = r\{(1 + t/r)^{K/k} - 1\}$


where T = minimum insulation thickness (in.), r = actual outside radius of pipe (in.), t = insulation thickness listed in this table for applicable fluid temperature and pipe size, K = conductivity of alternate material at mean rating temperature indicated for the applicable fluid temperature (Btu·in.[h·ft²-oF]); and k = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

b These thicknesses are based on energy *efficiency* considerations only. Additional insulation is sometimes required relative to safety issues/surface temperature.

^c Piping insulation is not required between the control valve and coil on run-outs when the control valve is located within 4 ftin. of the coil and the pipe size is 1 in. or less.

These thicknesses are based on energy *efficiency* considerations only. Issues such as water vapor permeability or surface condensation sometimes require vapor retarders or additional insulation

7. SERVICE WATER HEATING

7.1 General

7.1.1 Service Water Heating Scope

- **7.1.1.1 New Buildings.** Service water heating *systems* and *equipment* shall comply with the requirements of this section as described in Section 7.2.
- **7.1.1.2** Additions to Existing Buildings. Service water heating *systems* and *equipment* shall comply with the requirements of this section.
- **Exception:** When the service water heating to an *addition* is provided by existing service water heating systems and equipment, such systems and equipment shall not be required to comply with this standard. However, any new systems or equipment installed must comply with specific requirements applicable to those systems and equipment.
- **7.1.1.3** Alterations to Existing Buildings. Building service water heating equipment installed as a direct replacement for *existing building* service water heating equipment shall comply with the requirements of Section 7 applicable to the equipment being replaced. New and replacement piping shall comply with Section 7.4.3.

Exception: Compliance shall not be required where there is insufficient space or access to meet these requirements.

7.2 Compliance Path(s)

- **7.2.1** Compliance shall be achieved by meeting the requirements of Section 7.1, General; Section 7.4, Mandatory Provisions; Section 7.5, Prescriptive Path; Section 7.7, Submittals; and Section 7.8, Product Information.
- **7.2.2** Projects using the Energy Cost Budget Method (Section 11) for demonstrating compliance with the standard shall meet the requirements of Section 7.4, Mandatory Provisions, in conjunction with Section 11, Energy Cost Budget Method.

7.3 Simplified/Small Building Option (Not Used)

7.4 Mandatory Provisions

7.4.1 Load Calculations. Service water heating *system* design loads for the purpose of sizing *systems* and *equipment* shall be determined in accordance with *manufacturers*' published sizing guidelines or generally accepted engineering

standards and handbooks acceptable to the *adopting authority* (e.g., *ASHRAE Handbook—HVAC Applications*).

7.4.2 Equipment Efficiency. All water heating *equipment*, hot-water supply boilers used solely for heating potable water, pool heaters, and hot-water storage tanks shall meet the criteria listed in Table 7.8. Where multiple criteria are listed, all criteria shall be met. Omission of minimum performance requirements for certain classes of *equipment* does not preclude use of such *equipment* where appropriate. Equipment not listed in Table 7.8 has no minimum performance requirements.

Exception: All water heaters and hot-water supply boilers having more than 140 gal of storage capacity are not required to meet the *standby loss* (SL) requirements of Table 7.8 when

- a. the tank surface is thermally insulated to R-12.5,
- b. a standing pilot light is not installed, and
- c. gas- or oil-fired storage water heaters have a flue damper or fan-assisted combustion.
- **7.4.3 Service Hot-Water Piping Insulation.** The following piping shall be insulated to levels shown in Section 6, Table 6.8.3:
- a. recirculating system piping, including the supply and return piping of a circulating tank type water heater
- b. the first 8 ft of outlet piping for a constant temperature nonrecirculating storage *system*
- c. the inlet pipe between the storage tank and a heat trap in a nonrecirculating storage *system*
- d. pipes that are externally heated (such as heat trace or impedance heating)

7.4.4 Service Water Heating System Controls

7.4.4.1 Temperature Controls. Temperature controls shall be provided that allow for storage temperature adjustment from 120°F or lower to a maximum temperature compatible with the intended use.

Exception: When the *manufacturers*' installation instructions specify a higher minimum thermostat setting to minimize condensation and resulting corrosion.

- **7.4.4.2 Temperature Maintenance Controls.** Systems designed to maintain usage temperatures in hot-water pipes, such as recirculating hot-water systems or heat trace, shall be equipped with automatic time switches or other controls that can be set to switch off the usage temperature maintenance system during extended periods when hot water is not required.
- **7.4.4.3 Outlet Temperature Controls.** Temperature controlling means shall be provided to limit the maximum temperature of water delivered from lavatory faucets in public facility restrooms to 110°F.
- **7.4.4.4 Circulating Pump Controls.** When used to maintain storage tank water temperature, recirculating pumps shall be equipped with controls limiting operation to a period from the start of the heating cycle to a maximum of five minutes after the end of the heating cycle.

7.4.5 Pools

- **7.4.5.1 Pool Heaters.** Pool heaters shall be equipped with a readily accessible ON/OFF switch to allow shutting off the heater without adjusting the thermostat setting. Pool heaters fired by natural gas shall not have continuously burning pilot lights.
- **7.4.5.2 Pool Covers.** Heated pools shall be equipped with a vapor retardant pool cover on or at the water surface. Pools heated to more than 90°F shall have a pool cover with a minimum insulation value of R-12.

Exception: Pools deriving over 60% of the energy for heating from *site-recovered energy* or *solar energy source*.

7.4.5.3 Time Switches. Time switches shall be installed on swimming pool heaters and pumps.

Exceptions:

- a. Where public health standards require 24-hour pump operation.
- b. Where pumps are required to operate solar and waste heat recovery pool heating *systems*.
- **7.4.6 Heat Traps.** Vertical pipe risers serving storage water heaters and storage tanks not having integral heat traps and serving a nonrecirculating system shall have heat traps on both the inlet and outlet piping as close as practical to the storage tank. A heat trap is a means to counteract the natural convection of heated water in a vertical pipe run. The means is either a device specifically designed for the purpose or an arrangement of tubing that forms a loop of 360 degrees or piping that from the point of connection to the water heater (inlet or outlet) includes a length of piping directed downward before connection to the vertical piping of the supply water or hot-water distribution system, as applicable.

7.5 Prescriptive Path

7.5.1 Space Heating and Water Heating. The use of a gas-fired or oil-fired space-heating boiler system otherwise

complying with Section 6 to provide the total space heating and water heating for a building is allowed when one of the following conditions is met:

a. The single space-heating boiler, or the component of a modular or multiple boiler system that is heating the service water, has a standby loss in Btu/h not exceeding

$$(13.3 \times pmd + 400) / n$$
,

where pmd is the probable maximum demand in gal/h, determined in accordance with the procedures described in generally accepted engineering standards and handbooks, and n is the fraction of the year when the outdoor daily mean temperature is greater than $64.9^{\circ}F$.

The standby loss is to be determined for a test period of 24 hours duration while maintaining a boiler water temperature of at least 90°F above ambient, with an ambient temperature between 60°F and 90°F. For a boiler with a modulating burner, this test shall be conducted at the lowest input.

- b. It is demonstrated to the satisfaction of the *authority having jurisdiction* that the use of a single heat source will consume less energy than separate units.
- c. The energy input of the combined boiler and water heater system is less than 150,000 Btu/h.
- **7.5.2 Service Water Heating Equipment.** Service water heating *equipment* used to provide the additional function of space heating as part of a combination (integrated) *system* shall satisfy all stated requirements for the service water heating *equipment*.

7.6 Alternative Compliance Path (Not Used)

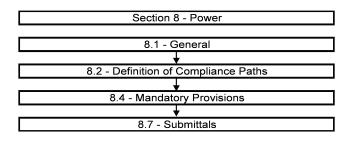
7.7 Submittals

7.7.1 General. The *authority having jurisdiction* may require submittal of compliance documentation and supplemental information, in accord with Section 4.2.2 of this standard.

Product Information

TABLE 7.8 Performance Requirements for Water Heating Equipment

Equipment Tons	Size Category	Subcategory or	Doufoumanos Dossilas Ja	Test
Equipment Type	(Input)	Rating Condition	Performance Required ^a	Procedure ^b
	≤12 kW	Resistance ≥20 gal	0.93-0.00132V EF	DOE 10 CFR Part 430
Electric water heaters	>12 kW	Resistance ≥20 gal	$20 + 35 \sqrt{V}$ SL, Btu/h	ANSI Z21.10.3
	≤24 Amps and ≤250 Volts	Heat Pump	0.93–0.00132V EF	DOE 10 CFR Part 430
Gas storage	≤75,000 Btu/h	≥20 gal	0.62–0.0019V EF	DOE 10 CFR Part 430
water heaters	>75,000 Btu/h	<4000 (Btu/h)/gal	80% E_t (Q/800 + 110 \sqrt{V}) SL, Btu/h	ANSI Z21.10.3
	>50,000 Btu/h and <200,000 Btu/h	≥4000 (Btu/h)/gal and <2 gal	0.62–0.0019V EF	DOE 10 CFR Part 430
Gas instantaneous water heaters	≥200,000 Btu/h ^c	≥4000 (Btu/h)/gal and <10 gal	$80\%~E_t$	
	≥200,000 Btu/h	≥4000 (Btu/h)/gal and ≥10 gal	80% E_t (Q/800 + 110 $\sqrt{\text{V}}$) SL, Btu/h	ANSI Z21.10.3
Oil storage	≤105,000 Btu/h	≥20 gal	0.59–0.0019V EF	DOE 10 CFR Part 430
water heaters	>105,000 Btu/h	<4000 (Btu/h)/gal	78% E_t (Q/800 + 110 \sqrt{V}) SL, Btu/h	ANSI Z21.10.3
	≤210,000 Btu/h	≥4000 (Btu/h)/gal and <2 gal	0.59–0.0019V EF	DOE 10 CFR Part 430
Oil instantaneous water heaters	>210,000 Btu/h	≥4000 (Btu/h)/gal and <10 gal	$80\%~E_t$	
	>210,000 Btu/h	≥4000 (Btu/h)/gal and ≥10 gal	78% E_t (Q/800 + 110 $\sqrt{\overline{V}}$) SL, Btu/h	ANSI Z21.10.3
Hot-water supply boilers, gas and oil	≥300,000 Btu/h and <12,500,000 Btu/h	≥4000 (Btu/h)/gal and <10 gal	80% E _t	
Hot-water supply boilers, gas		≥4000 (Btu/h)/gal and ≥10 gal	80% E_t (Q/800 + 110 $\sqrt{\rm V}$) SL, Btu/h	ANSI Z21.10.3
Hot-water supply boilers, oil		≥4000 (Btu/h)/gal and ≥10 gal	78% E_t (Q/800 + 110 $\sqrt{\rm V}$) SL, Btu/h	
Pool heaters, oil and gas	All		78% E _t	ASHRAE 146
Heat pump pool heaters	All		4.0 COP	ASHRAE 146
Unfired storage tanks	All		R-12.5	(none)


^a Energy factor (EF) and thermal efficiency (E_i) are minimum requirements, while standby loss (SL) is maximum Btu/h based on a 70°F temperature difference between stored water and ambient requirements. In the EF equation, V is the rated volume in gallons. In the SL equation, V is the rated volume in gallons and Q is the nameplate input rate in Btu/h.

b Section 12 contains a complete specification, including the year version, of the referenced test procedure.

c Instantaneous water heaters with input rates below 200,000 Btu/h must comply with these requirements if the water heater is designed to heat water to temper-

atures of 180°F or higher.

8. POWER

8.1 General. This section applies to all building power distribution *systems*.

8.2 Compliance Path(s)

8.2.1 Power distribution systems in all projects shall comply with the requirements of Section 8.1, General; Section 8.4, Mandatory Provisions; and Section 8.7, Submittals.

8.3 Simplified/Small Building Option (Not Used)

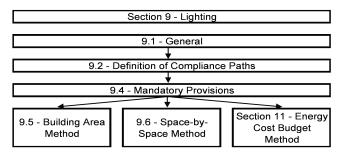
8.4 Mandatory Provisions

8.4.1 Voltage Drop

- **8.4.1.1 Feeders.** *Feeder conductors* shall be sized for a maximum *voltage drop* of 2% at design load.
- **8.4.1.2 Branch Circuits.** *Branch circuit* conductors shall be sized for a maximum *voltage drop* of 3% at design load.

8.5 Prescriptive Path (Not Used)

8.6 Alternative Compliance Path (Not Used)


8.7 Submittals

- **8.7.1 Drawings.** Construction documents shall require that within 30 days after the date of system acceptance, record drawings of the actual installation shall be provided to the building owner, including
- a single-line diagram of the building electrical distribution system and
- floor plans indicating location and area served for all distribution.
- **8.7.2 Manuals.** Construction documents shall require that an operating manual and maintenance manual be provided to the building owner. The manuals shall include, at a minimum, the following:
- a. Submittal data stating *equipment* rating and selected options for each piece of *equipment* requiring maintenance.
- b. Operation manuals and maintenance manuals for each piece of *equipment* requiring maintenance. Required routine maintenance actions shall be clearly identified.
- c. Names and addresses of at least one qualified *service* agency.
- A complete narrative of how each system is intended to operate.

(Enforcement agencies should only check to be sure that the construction documents require this information to be transmitted to the owner and should not expect copies of any of the materials.)

8.8 Product Information (Not Used)

9. LIGHTING

9.1 General

- **9.1.1 Scope.** This section shall apply to the following:
- a. interior spaces of *buildings*
- exterior building features, including facades, illuminated roofs, architectural features, entrances, exits, loading docks, and illuminated canopies
- exterior building grounds lighting provided through the building's electrical service

Exceptions:

- a. emergency lighting that is automatically off during normal *building* operation
- b. lighting within dwelling units
- c. lighting that is specifically designated as required by a health or life safety statute, ordinance, or regulation
- d. decorative gas lighting systems
- **9.1.2 Lighting Alterations.** The replacement of lighting *systems* in any building space shall comply with the *LPD* requirements of Section 9 applicable to that space. New lighting *systems* shall comply with the applicable *LPD* requirements of Section 9. Any new *control devices* as a direct replacement of existing *control devices* shall comply with the specific requirements of Section 9.4.1.2(b).
- **Exception:** Alterations that replace less than 50% of the *luminaires* in a *space* need not comply with these requirements provided that such *alterations* do not increase the installed interior lighting power.
- **9.1.3** Installed Interior Lighting Power. The *installed interior lighting power* shall include all power used by the *luminaires*, including *lamps*, *ballasts*, *transformers*, and *control devices* except as specifically exempted in Section 9.2.2.3.
- **Exception:** If two or more independently operating lighting systems in a space are capable of being controlled to prevent simultaneous user operation, the installed interior lighting power shall be based solely on the lighting system with the highest wattage.
- **9.1.4 Luminaire Wattage.** Luminaire wattage incorporated into the installed interior lighting power shall be determined in accordance with the following criteria:

- a. The wattage of incandescent or tungsten-halogen luminaires with medium screw base sockets and not containing permanently installed ballasts shall be the maximum labeled wattage of the luminaire.
- b. The wattage of luminaires with permanently installed or remote ballasts or transformers shall be the operating input wattage of the maximum lamp/auxiliary combination based on values from the auxiliary manufacturers' literature or recognized testing laboratories or shall be the maximum labeled wattage of the luminaire.
- c. For line-voltage lighting track and plug-in busway, designed to allow the addition and/or relocation of luminaires without altering the wiring of the system, the wattage shall be
 - 1. the specified wattage of the luminaires included in the system with a minimum of 30 W/lin ft or
 - 2. the wattage limit of the system's circuit breaker or
 - 3. the wattage limit of other permanent current-limiting device(s) on the system.
- d. The wattage of low-voltage lighting track, cable conductor, rail conductor, and other flexible lighting systems that allow the addition and/or relocation of luminaires without altering the wiring of the system shall be the specified wattage of the transformer supplying the system.
- e. The wattage of all other miscellaneous lighting equipment shall be the specified wattage of the lighting equipment.

9.2 Compliance Path(s)

- **9.2.1 Lighting systems and equipment** shall comply with Section 9.1, General; Section 9.4, Mandatory Provisions; and the prescriptive requirements of either
- a. Section 9.5, Building Area Method; or
- b. Section 9.6, Space-by-Space Method.

9.2.2 Prescriptive Requirements

- **9.2.2.1 The Building Area Method** for determining the *interior lighting power allowance*, described in Section 9.5, is a simplified approach for demonstrating compliance.
- **9.2.2.2 The Space-by-Space Method**, described in Section 9.6, is an alternative approach that allows greater flexibility.
- **9.2.2.3 Interior Lighting Power.** The *interior lighting power allowance* for a *building* or a separately metered or permitted portion of a *building* shall be determined by either the *Building* Area Method described in Section 9.5 or the Space-by-Space Method described in Section 9.6. Trade-offs of *interior lighting power allowance* among portions of the *building* for which a different method of calculation has been used are not permitted. The *installed interior lighting power* identified in accordance with Section 9.1.3 shall not exceed the *interior lighting power allowance* developed in accordance with Section 9.5 or 9.6.
- **Exceptions:** The following *lighting equipment* and applications shall not be considered when determining the *interior lighting power allowance* developed in accordance with Section 9.5 or 9.6, nor shall the wattage for such lighting be included in the *installed interior lighting*

power identified in accordance with Section 9.1.3. However, any such lighting shall not be exempt unless it is an addition to general lighting and is controlled by an independent *control device*.

- Display or accent lighting that is an essential element for the function performed in galleries, museums, and monuments.
- b. Lighting that is integral to *equipment* or instrumentation and is installed by its *manufacturer*.
- Lighting specifically designed for use only during medical or dental procedures and lighting integral to medical *equipment*.
- d. Lighting integral to both open and glass-enclosed refrigerator and freezer cases.
- e. Lighting integral to food warming and food preparation *equipment*.
- f. Lighting for plant growth or maintenance.
- g. Lighting in spaces specifically designed for use by occupants with special lighting needs including visual impairment and other medical and age-related issues.
- h. Lighting in *retail* display windows, provided the display area is enclosed by ceiling-height partitions.
- i. Lighting in interior spaces that have been specifically designated as a registered interior *historic* landmark.
- j. Lighting that is an integral part of advertising or directional signage.
- k. Exit signs.
- Lighting that is for sale or lighting educational demonstration systems.
- m. Lighting for theatrical purposes, including performance, stage, and film and video production.
- Lighting for television broadcasting in sporting activity areas.
- o. Casino gaming areas.
- Furniture-mounted supplemental task lighting that is controlled by automatic shutoff and complies with Section 9.4.1.4(d).

9.3 (Not Used)

9.4 Mandatory Provisions

9.4.1 Lighting Control

- **9.4.1.1** Automatic Lighting Shutoff. Interior lighting in *buildings* larger than 5000 ft² shall be controlled with an *automatic control device* to shut off *building* lighting in all spaces. This *automatic control device* shall function on either
- a scheduled basis using a time-of-day operated control device that turns lighting off at specific programmed times—an independent program schedule shall be provided for areas of no more than 25,000 ft² but not more than one floor—or
- b. an *occupant sensor* that shall turn lighting off within 30 minutes of an occupant leaving a space or
- c. a signal from another control or alarm system that indicates the area is unoccupied.

Exceptions: The following shall not require an *automatic control device:*

- a. Lighting intended for 24-hour operation.
- b. Lighting in spaces where patient care is rendered.
- Lighting in spaces where an automatic shutoff would endanger the safety or security of the room or building occupant(s).
- **9.4.1.2 Space Control.** Each space enclosed by ceilingheight partitions shall have at least one *control device* to independently *control* the *general lighting* within the space. Each manual device shall be readily accessible and located so the occupants can see the controlled lighting.
- a. A control device shall be installed that automatically turns lighting off within 30 minutes of all occupants leaving a space, except spaces with multi-scene control, in
 - classrooms (not including shop classrooms, laboratory classrooms, and preschool through 12th grade classrooms),
 - 2. conference/meeting rooms, and
 - 3. employee lunch and break rooms.

These spaces are not required to be connected to other automatic lighting shutoff controls.

b. For all other spaces, each control device shall be activated either manually by an occupant or automatically by sensing an occupant. Each control device shall control a maximum of 2500 ft² area for a space 10,000 ft² or less and a maximum of 10,000 ft² area for a space greater than 10,000 ft² and be capable of overriding any time-of-day scheduled shutoff control for no more than four hours.

Exception: Remote location shall be permitted for reasons of safety or security when the remote control device has an indicator pilot light as part of or next to the control device and the light is clearly labeled to identify the controlled lighting.

- **9.4.1.3** Exterior Lighting Control. Lighting for all exterior applications not exempted in Section 9.1 shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours. Lighting not designated for dusk-to-dawn operation shall be controlled by either
- a. a combination of a photosensor and a time switch or
- b. an astronomical time switch.

Lighting designated for dusk-to-dawn operation shall be controlled by an astronomical time switch or photosensor. All time switches shall be capable of retaining programming and the time setting during loss of power for a period of at least ten hours.

Exception: Lighting for covered vehicle entrances or exits from buildings or parking structures where required for safety, security, or eye adaptation.

9.4.1.4 Additional Control

a. *Display/Accent Lighting*—display or accent lighting shall have a separate *control device*.

- b. *Case Lighting*—lighting in cases used for display purposes shall have a separate *control device*.
- c. Hotel and Motel Guest Room Lighting—hotel and motel guest rooms and guest suites shall have a master control device at the main room entry that controls all permanently installed luminaires and switched receptacles.
- d. Task Lighting—supplemental task lighting, including permanently installed undershelf or undercabinet lighting, shall have a control device integral to the luminaires or be controlled by a wall-mounted control device provided the control device is readily accessible and located so that the occupant can see the controlled lighting.
- Nonvisual Lighting—lighting for nonvisual applications, such as plant growth and food warming, shall have a separate control device.
- f. Demonstration Lighting—lighting equipment that is for sale or for demonstrations in lighting education shall have a separate control device.
- **9.4.2 Tandem Wiring.** Luminaires designed for use with one or three linear fluorescent lamps greater than 30 W each shall use two-lamp tandem-wired ballasts in place of single-lamp ballasts when two or more luminaires are in the same space and on the same control device.

Exceptions:

- Recessed luminaires more than 10 ft apart measured center to center.
- Surface-mounted or pendant luminaires that are not continuous.
- Luminaires using single-lamp high-frequency electronic ballasts.
- d. Luminaires using three-lamp high-frequency electronic or three-lamp electromagnetic ballasts.
- e. Luminaires on emergency circuits.
- f. Luminaires with no available pair.
- **9.4.3** Exit Signs. Internally illuminated exit signs shall not exceed 5 W per face.
- **9.4.4** Exterior Building Grounds Lighting. All exterior building grounds luminaires that operate at greater than 100 W shall contain lamps having a minimum efficacy of 60 lm/W unless the luminaire is controlled by a motion sensor or qualifies for one of the exceptions under Section 9.1.1 or 9.4.5.
- **9.4.5** Exterior Building Lighting Power. The total *exterior lighting power allowance* for all exterior building applications is the sum of the individual lighting power densities permitted in Table 9.4.5 for these applications plus an additional unrestricted allowance of 5% of that sum. Trade-offs are allowed only among exterior lighting applications listed in the Table 9.4.5 "Tradable Surfaces" section.

Exceptions: Lighting used for the following exterior applications is exempt when equipped with a *control device* independent of the control of the nonexempt lighting:

- a. Specialized signal, directional, and marker lighting associated with transportation.
- b. Advertising signage or directional signage.

TABLE 9.4.5 Lighting Power Densities for Building Exteriors

	TABLE 5.4.5 Lighting Fower Densities for Bu	namy Exteriors
	Uncovered parking areas	
	Parking lots and drives	0.15 W/ft2
	Building grounds	
	Walkways less than 10 ft wide	1.0 W/linear foot
	Walkways 10 ft wide or greater	
T. 111 C. 6	Plaza areas	0.2 W/ft ²
Tradable Surfaces (LPDs for uncovered	Special feature areas	
parking areas, building	Stairways	1.0 W/ft ²
grounds, building entrances and exits, can-	Building entrances and exits	
opies and overhangs, and	Main entries	30 W/linear foot of door width
outdoor sales areas may be traded.)	Other doors	20 W/linear foot of door width
	Canopies and overhangs	
	Canopies (free standing and attached and overhangs)	1.25 W/ft ²
	Outdoor sales	
	Open areas (including vehicle sales lots)	$0.5~\mathrm{W/ft^2}$
	Street frontage for vehicle sales lots in addition to "open area" allowance	
Nontradable Surfaces (LPD calculations for the	Building facades	0.2 W/ft ² for each illuminated wall or surface or 5.0 W/linear foot for each illuminated wall or surface length
following applications can be used only for the specific application and cannot be traded between	Automated teller machines and night depositories	270 W per location plus 90 W per additional ATM per location
surfaces or with other exterior lighting. The following allowances are in addition to any allow- ance otherwise permit- ted in the "Tradable	Entrances and gatehouse inspection stations at guarded facilities	1.25 W/ft² of uncovered area (covered areas are included in the "Canopies and Overhangs" section of "Tradable Surfaces")
	Loading areas for law enforcement, fire, ambulance, and other emergency service vehicles	0.5 W/ft ² of uncovered area (covered areas are included in the "Canopies and Overhangs" section of "Tradable Surfaces")
Surfaces" section of this table.)	Drive-through windows at fast food restaurants	400 W per drive-through
	Parking near 24-hour retail entrances	800 W per main entry

- c. Lighting integral to *equipment* or instrumentation and installed by its *manufacturer*.
- d. Lighting for theatrical purposes, including performance, stage, film production, and video production.
- e. Lighting for athletic playing areas.
- f. Temporary lighting.
- g. Lighting for industrial production, material handling, transportation sites, and associated storage areas.
- h. Theme elements in theme/amusement parks.
- Lighting used to highlight features of public monuments and registered *historic* landmark structures or *buildings*.

9.5 Building Area Method Compliance Path

9.5.1 Building Area Method of Calculating Interior Lighting Power Allowance. Use the following steps to deter-

mine the interior lighting power allowance by the Building Area Method:

- a. Determine the appropriate building area type from Table 9.5.1 and the allowed *LPD* (watts per unit area) from the "Building Area Method" column. For building area types not listed, selection of a reasonably equivalent type shall be permitted.
- Determine the gross lighted floor area (square feet) of the building area type.
- c. Multiply the gross lighted floor areas of the building area type(s) times the *LPD*.
- d. The *interior lighting power allowance* for the building is the sum of the *lighting power allowances* of all building area types. Trade-offs among building area types are permitted provided that the total *installed interior lighting power* does not exceed the *interior lighting power allowance*.

TABLE 9.5.1 Lighting Power Densities
Using the Building Area Method

Building Area Type ^a	LPD (W/ft²)
Automotive facility	0.9
Convention center	1.2
Courthouse	1.2
Dining: bar lounge/leisure	1.3
Dining: cafeteria/fast food	1.4
Dining: family	1.6
Dormitory	1.0
Exercise center	1.0
Gymnasium	1.1
Health-care clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing facility	1.3
Motel	1.0
Motion picture theater	1.2
Multifamily	0.7
Museum	1.1
Office	1.0
Parking garage	0.3
Penitentiary	1.0
Performing arts theater	1.6
Police/fire station	1.0
Post office	1.1
Religious building	1.3
Retail	1.5
School/university	1.2
Sports arena	1.1
Town hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

^a In cases where both a general building area type and a specific building area type are listed, the specific building area type shall apply.

9.6 Alternative Compliance Path: Space-by-Space Method

9.6.1 Space-by-Space Method of Calculating Interior Lighting Power Allowance. Use the following steps to determine the interior lighting power allowance by the Space-by-Space Method:

- Determine the appropriate building type from Table 9.6.1.
 For building types not listed, selection of a reasonably equivalent type shall be permitted.
- b. For each space enclosed by partitions 80% or greater than ceiling height, determine the gross interior floor area by measuring to the center of the partition wall. Include the floor area of balconies or other projections. Retail spaces

- do not have to comply with the 80% partition height requirements.
- c. Determine the *interior lighting power allowance* by using the columns designated Space-by-Space Method in Table 9.6.1. Multiply the floor area(s) of the space(s) times the allowed *LPD* for the space type that most closely represents the proposed use of the space(s). The product is the *lighting power allowance* for the space(s). For space types not listed, selection of a reasonable equivalent category shall be permitted.
- d. The interior lighting power allowance is the sum of lighting power allowances of all spaces. Trade-offs among spaces are permitted provided that the total installed interior lighting power does not exceed the interior lighting power allowance.

9.6.2 Additional Interior Lighting Power. When using the Space-by-Space Method, an increase in the *interior lighting power allowance* is allowed for specific lighting functions. Additional power shall be allowed only if the specified lighting is installed and automatically controlled, separately from the general lighting, to be turned off during nonbusiness hours. This additional power shall be used only for the specified *luminaires* and shall not be used for any other purpose.

An increase in the *interior lighting power allowance* is permitted in the following cases:

- a. For spaces in which lighting is specified to be installed in addition to the general lighting for the purpose of decorative appearance, such as chandelier-type luminaries or sconces or for highlighting art or exhibits, provided that the additional lighting power shall not exceed 1.0 W/ft² of such spaces.
- b. For lighting equipment installed in sales areas and specifically designed and directed to highlight merchandise, calculate the additional lighting power as follows:

Additional Interior Lighting Power Allowance = $1000 \text{ watts} + (\text{Retail Area } 1 \times 1.0 \text{ W/ft}^2) + (\text{Retail Area } 2 \times 1.7 \text{ W/ft}^2)$

+ (Retail Area $3 \times 2.6 \text{ W/ft}^2$)

+ (Retail Area $4 \times 4.2 \text{ W/ft}^2$),

where

Retail Area 1 = the floor area for all products not listed in Retail Areas 2, 3, or 4;

Retail Area 2 = the floor area used for the sale of vehicles, sporting goods, and small electronics;

Retail Area 3 = the floor area used for the sale of furniture, clothing, cosmetics, and artwork; and

Retail Area 4 = the floor area used for the sale of jewelry, crystal, and china.

Exception: Other merchandise categories may be included in Retail Areas 2 through 4 above, provided that justification documenting the need for additional lighting power based on visual inspection, contrast, or other critical display is approved by the *authority having jurisdiction*.

9.7 Submittals (Not Used)

9.8 Product Information (Not Used)

TABLE 9.6.1 Lighting Power Densities Using the Space-by-Space Method

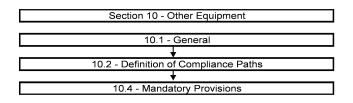

Common Space Types ^a	LPD, W/ft ²	Building-Specific Space Types	LPD, W/ft ²
Office—Enclosed	1.1	Gymnasium/Exercise Center	
Office—Open Plan	1.1	Playing Area	1.4
Conference/Meeting/Multipurpose	1.3	Exercise Area	0.9
Classroom/Lecture/Training	1.4	Courthouse/Police Station/Penitentiary	
For Penitentiary	1.3	Courtroom	1.9
Lobby	1.3	Confinement Cells	0.9
For Hotel	1.1	Judges' Chambers	1.3
For Performing Arts Theater	3.3	Fire Stations	
For Motion Picture Theater	1.1	Engine Room	0.8
Audience/Seating Area	0.9	Sleeping Quarters	0.3
For Gymnasium	0.4	Post Office—Sorting Area	1.2
For Exercise Center	0.3	Convention Center—Exhibit Space	1.3
For Convention Center	0.7	Library	
For Penitentiary	0.7	Card File and Cataloging	1.1
For Religious Buildings	1.7	Stacks	1.7
For Sports Arena	0.4	Reading Area	1.2
For Performing Arts Theater	2.6	Hospital	
For Motion Picture Theater	1.2	Emergency	2.7
For Transportation	0.5	Recovery	0.8
Atrium—First Three Floors	0.6	Nurses' Station	1.0
Atrium—Each Additional Floor	0.2	Exam/Treatment	1.5
Lounge/Recreation	1.2	Pharmacy	1.2
For Hospital	0.8	Patient Room	0.7
Dining Area	0.9	Operating Room	2.2
For Penitentiary	1.3	Nursery	0.6
For Hotel	1.3	Medical Supply	1.4
For Motel	1.2	Physical Therapy	0.9
For Bar Lounge/Leisure Dining	1.4	Radiology	0.4
For Family Dining	2.1	Laundry—Washing	0.6
Food Preparation	1.2	Automotive—Service/Repair	0.7
Laboratory	1.4	Manufacturing	
Restrooms	0.9	Low Bay (<25 ft Floor to Ceiling Height)	1.2
Dressing/Locker/Fitting Room	0.6	High Bay (≥25 ft Floor to Ceiling Height)	1.7
Corridor/Transition	0.5	Detailed Manufacturing	2.1
For Hospital	1.0	Equipment Room	1.2
For Manufacturing Facility	0.5	Control Room	0.5
Stairs—Active	0.6	Hotel/Motel Guest Rooms	1.1
Active Storage	0.8	Dormitory—Living Quarters	1.1
For Hospital	0.9	Museum	
Inactive Storage	0.3	General Exhibition	1.0
For Museum	0.8	Restoration	1.7
Electrical/Mechanical	1.5	Bank/Office—Banking Activity Area	1.5

TABLE 9.6.1 Lighting Power Densities Using the Space-by-Space Method (continued)

Common Space Types ^a	LPD, W/ft ²	Building-Specific Space Types	LPD, W/ft ²
Workshop	1.9	Religious Buildings	
Sales Area [for accent lighting, see Section 9.6.2(b)]	1.7	Worship Pulpit, Choir	2.4
		Fellowship Hall	0.9
		Retail	
		Sales Area [for accent lighting, see Section 9.6.3(c)]	1.7
		Mall Concourse	1.7
		Sports Arena	
		Ring Sports Area	2.7
		Court Sports Area	2.3
		Indoor Playing Field Area	1.4
		Warehouse	
		Fine Material Storage	1.4
		Medium/Bulky Material Storage	0.9
		Parking Garage—Garage Area	0.2
		Transportation	
		Airport—Concourse	0.6
		Air/Train/Bus—Baggage Area	1.0
		Terminal—Ticket Counter	1.5

^a In cases where both a common space type and a building-specific type are listed, the building specific space type shall apply.

10. OTHER EQUIPMENT

10.1 General

- **10.1.1 Scope.** This section applies only to the equipment described below.
- **10.1.1.1 New Buildings.** Other equipment installed in new buildings shall comply with the requirements of this section.
- **10.1.1.2 Additions to Existing Buildings.** Other equipment installed in *additions* to *existing buildings* shall comply with the requirements of this section.

10.1.1.3 Alterations to Existing Buildings

- **10.1.1.3.1** Alterations to other building service equipment or systems shall comply with the requirements of this section applicable to those specific portions of the building and its systems that are being altered.
- **10.1.1.3.2** Any new equipment subject to the requirements of this section that is installed in conjunction with the *alterations*, as a direct replacement of existing equipment or

control devices, shall comply with the specific requirements applicable to that equipment or control devices.

Exception: Compliance shall not be required for the relocation or reuse of existing equipment.

10.2 Compliance Path(s)

- **10.2.1** Compliance with Section 10 shall be achieved by meeting all requirements of Section 10.1, General; Section 10.4, Mandatory Provisions; and Section 10.8, Product Information.
- **10.2.2** Projects using the Energy Cost Budget Method (Section 11 of this standard) must comply with Section 10.4, the mandatory provisions of this section, as a portion of that compliance path.

10.3 Simplified/Small Building Option (Not Used)

10.4 Mandatory Provisions

- **10.4.1 Electric Motors.** Electric motors shall comply with the requirements of the Energy Policy Act of 1992 where applicable, as shown in Table 10.8. Motors that are not included in the scope of the Energy Policy Act of 1992 have no performance requirements in this section.
- 10.5 Prescriptive Compliance Path (Not Used)
- 10.6 Alternative Compliance Path (Not Used)
- 10.7 Submittals (Not Used)
- 10.8 Product Information

TABLE 10.8 Minimum Nominal Efficiency for General Purpose Design A and Design B Motors^a

	Minimum Nominal Full-Load Efficiency (%)					
		Open Motors		I	Enclosed Motor	rs
Number of Poles ⇒	2	4	6	2	4	6
Synchronous Speed (RPM) ⇒	3600	1800	1200	3600	1800	1200
Motor Horsepower						
1	_	82.5	80.0	75.5	82.5	80.0
1.5	82.5	84.0	84.0	82.5	84.0	85.5
2	84.0	84.0	85.5	84.0	84.0	86.5
3	84.0	86.5	86.5	85.5	87.5	87.5
5	85.5	87.5	87.5	87.5	87.5	87.5
7.5	87.5	88.5	88.5	88.5	89.5	89.5
10	88.5	89.5	90.2	89.5	89.5	89.5
15	89.5	91.0	90.2	90.2	91.0	90.2
20	90.2	91.0	91.0	90.2	91.0	90.2
25	91.0	91.7	91.7	91.0	92.4	91.7
30	91.0	92.4	92.4	91.0	92.4	91.7
40	91.7	93.0	93.0	91.7	93.0	93.0
50	92.4	93.0	93.0	92.4	93.0	93.0
60	93.0	93.6	93.6	93.0	93.6	93.6
75	93.0	94.1	93.6	93.0	94.1	93.6
100	93.0	94.1	94.1	93.6	94.5	94.1
125	93.6	94.5	94.1	94.5	94.5	94.1
150	93.6	95.0	94.5	94.5	95.0	95.0
200	94.5	95.0	94.5	95.0	95.0	95.0

^a Nominal efficiencies shall be established in accordance with NEMA Standard MG1. Design A and Design B are National Electric Manufacturers Association (NEMA) design class designations for fixed-frequency small and medium AC squirrel-cage induction motors.

11. ENERGY COST BUDGET METHOD

11.1 General

- 11.1.1 Energy Cost Budget Method Scope. The building Energy Cost Budget Method is an alternative to the prescriptive provisions of this standard. It may be employed for evaluating the compliance of all proposed designs except designs with no mechanical system.
- 11.1.2 Trade-Offs Limited to Building Permit. When the building permit being sought applies to less than the whole building, only the calculation parameters related to the systems to which the permit applies shall be allowed to vary. Parameters relating to unmodified existing conditions or to future building components shall be identical for both the *energy cost budget* and the *design energy cost* calculations. Future building components shall meet the prescriptive requirements of Sections 5.5, 6.5, 7.5, and either 9.5 or 9.6.
- **11.1.3 Envelope Limitation.** For new buildings or *additions*, the building Energy Cost Budget Method results shall not be submitted for building permit approval to the *authority having jurisdiction* prior to submittal for approval of the building envelope design.
- **11.1.4 Compliance.** Compliance with Section 11 will be achieved if
- a. all requirements of Sections 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4 are met;
- b. the *design energy cost*, as calculated in Section 11.3, does not exceed the *energy cost budget*, as calculated by the simulation program described in Section 11.2; and
- c. the energy *efficiency* level of components specified in the building design meet or exceed the *efficiency* levels used to calculate the *design energy cost*.

Informative Note: The energy cost budget and the design energy cost calculations are applicable only for determining compliance with this standard. They are not predictions of actual energy consumption or costs of the proposed design after construction. Actual experience will differ from these calculations due to variations such as occupancy, building operation and maintenance, weather, energy use not covered by this standard, changes in energy rates between design of the building and occupancy, and precision of the calculation tool.

- **11.1.5 Documentation Requirements.** Compliance shall be documented and submitted to the *authority having jurisdiction*. The information submitted shall include the following:
- a. The *energy cost budget* for the *budget building design* and the *design energy cost* for the *proposed design*.
- b. A list of the energy-related features that are included in the design and on which compliance with the provisions of Section 11 is based. This list shall document all energy features that differ between the models used in the *energy* cost budget and the design energy cost calculations.
- c. The input and output report(s) from the simulation program, including a breakdown of energy usage by at least the following components: lights, internal equipment loads, service water heating equipment, space heating equipment, space cooling and heat rejection equipment,

- fans, and other HVAC equipment (such as pumps). The output reports shall also show the amount of time any loads are not met by the HVAC system for both the *proposed design* and *budget building design*.
- d. An explanation of any error messages noted in the *simulation program* output.

11.2 Simulation General Requirements

11.2.1 Simulation Program. The *simulation program* shall be a computer-based program for the analysis of energy consumption in buildings (a program such as, but not limited to, DOE-2 or BLAST). The *simulation program* shall include calculation methodologies for the building components being modeled.

Note to Adopting Authority: ASHRAE Standing Standard Project Committee 90.1 recommends that a compliance shell implementing the rules of a compliance supplement that controls inputs to and reports outputs from the required computer analysis program be adopted for the purposes of easier use and simpler compliance.

- **11.2.1.1** The *simulation program* shall be approved by the *adopting authority* and shall, at a minimum, have the ability to explicitly model all of the following:
- a. a minimum of 1400 hours per year
- hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation, defined separately for each day of the week and holidays
- c. thermal mass effects
- d. ten or more thermal zones
- e. part-load performance curves for mechanical equipment
- f. capacity and *efficiency* correction curves for mechanical heating and cooling equipment
- g. air-side and water-side economizers with integrated control
- h. the *budget building design* characteristics specified in Section 11.2.5
- **11.2.1.2** The *simulation program* shall have the ability to either
- a. directly determine the design energy cost and energy cost budget or
- b. produce hourly reports of energy use by energy source suitable for determining *the design energy cost* and *energy cost budget* using a separate calculation engine.
- **11.2.1.3** The *simulation program* shall be capable of performing design load calculations to determine required HVAC equipment capacities and air and water flow rates in accordance with Section 6.4.2 for both the *proposed design* and the *budget building design*.
- **11.2.1.4** The simulation program shall be tested according to Standard 140, and the results shall be furnished by the software provider.
- **11.2.2 Climatic Data**. The *simulation program* shall perform the simulation using hourly values of climatic data, such as temperature and humidity from representative climatic

data, for the city in which the *proposed design* is to be located. For cities or urban regions with several climatic data entries, and for locations where weather data are not available, the designer shall select available weather data that best represent the climate at the construction site. Such selected weather data shall be approved by the *authority having jurisdiction*.

11.2.3 Purchased Energy Rates. Annual energy costs shall be determined using rates for purchased energy, such as electricity, gas, oil, propane, steam, and chilled water, and approved by the *adopting authority*.

Exception: On-site renewable energy sources or site-recovered energy shall not be considered to be purchased energy and shall not be included in the *design energy cost*. Where on-site renewable or site-recovered sources are used, the *budget building design* shall be based on the energy source used as the backup energy source or electricity if no backup energy source has been specified.

11.2.4 Compliance Calculations. The *design energy cost* and *energy cost budget* shall be calculated using

- a. the same *simulation program*,
- b. the same weather data, and
- c. the same purchased energy rates.

11.2.5 Exceptional Calculation Methods. Where no simulation program is available that adequately models a design, material, or device, the authority having jurisdiction may approve an exceptional calculation method to be used to demonstrate compliance with Section 11. Applications for approval of an exceptional method to include theoretical and empirical information verifying the method's accuracy shall include the following documentation to demonstrate that the exceptional calculation method and results

- a. make no change in any input parameter values specified by this standard and the *adopting authority*;
- b. provide input and output documentation that facilitates the enforcement agency's review and meets the formatting and content required by the *adopting authority*; and
- c. are supported with instructions for using the method to demonstrate that the *energy cost budget* and *design energy cost* required by Section 11 are met.

11.3 Calculation of Design Energy Cost and Energy Cost Budget

11.3.1 The simulation model for calculating the design energy cost and the *energy cost budget* shall be developed in accordance with the requirements in Table 11.3.1.

TABLE 11.3.1 Modeling Requirements for Calculating Design Energy Cost and Energy Cost Budget

N	o. Proposed Building Design (Column A) Design Energy Cost (DEC)	Budget Building Design (Column B) Energy Cost Budget (ECB)						
1. I	1. Design Model							
a.	The simulation model of the <i>proposed building design</i> shall be consistent with the design documents, including proper accounting of fenestration and opaque envelope types and area; interior lighting power and controls; HVAC system types, sizes, and controls; and service water heating systems and controls.	modifying the <i>proposed design</i> as described in this table. Except as specifically instructed in this table, all building systems and equipment shall be modeled						
b.	All conditioned spaces in the <i>proposed building design</i> shall be simulated as being both heated and cooled even if no cooling or heating system is being installed.	identically in the <i>budget building design</i> and <i>pro-</i> posed building design.						
c.	When the <i>energy cost budget</i> method is applied to buildings in which energy-related features have not yet been designed (e.g., a lighting system), those yet-to-be-designed features shall be described in the <i>proposed building design</i> so that							
	they minimally comply with applicable mandatory and prescriptive requirements							
	from Sections 5 through 10. Where the space classification for a building is not known, the building shall be categorized as an office building.							
2.	Additions and Alterations							
	s acceptable to demonstrate compliance using building models that exclude parts he <i>existing building</i> provided all of the following conditions are met:	Same as proposed building design						

Work to be performed under the current permit application in excluded parts of the

Excluded parts of the building are served by HVAC systems that are entirely separate from those serving parts of the building that are included in the building

d. If a declining block or similar utility rate is being used in the analysis and the excluded and included parts of the building are on the same utility meter, the rate shall reflect the utility block or rate for the building plus the addition.

building shall meet the requirements of Sections 5 through 10.

model.

are identical.

TABLE 11.3.1 Modeling Requirements for Calculating Design Energy Cost and Energy Cost Budget (continued)

	No.	Proposed Building Design (Column A) Design Energy Cost (DEC)	Budget Building Design (Column B) Energy Cost Budget (ECB)
3.	Spa	ace Use Classification	
		The building type or space type classifications shall be chosen in accordance with Section 9.5.1 or 9.6.1. The user or designer shall specify the space use classifications using either the building type or space type categories but shall not combine the two types of categories within a single permit application. More than one building type category may be used for a building if it is a mixed-use facility.	Same as proposed building design
4.	Sch	nedules	
		The schedule types listed in Section 11.2.1.1(b) shall be required input. The schedules shall be typical of the proposed building type as determined by the designer and approved by the <i>authority having jurisdiction</i> . Required schedules shall be identical for the <i>proposed building design</i> and <i>budget building design</i> .	Same as proposed building design

5. Building Envelope

All components of the building envelope in the *proposed building design* shall be modeled as shown on architectural drawings or as installed for *existing building* envelopes.

Exceptions: The following building elements are permitted to differ from architectural drawings.

- a. Any envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described. If not separately described, the area of an envelope assembly must be added to the area of the adjacent assembly of that same type.
- b. Exterior surfaces whose azimuth orientation and tilt differ by no more than 45 degrees and are otherwise the same may be described as either a single surface or by using multipliers.
- c. For exterior roofs other than roofs with ventilated attics, the roof surface may be c. modeled with a reflectance of 0.45 if the reflectance of the proposed design roof is greater than 0.70 and its emittance is greater than 0.75. The reflectance and emittance shall be tested in accordance with the Exception to Section 5.5.3.1. All other roof surfaces shall be modeled with a reflectance of 0.3.
- d. Manually operated fenestration shading devices such as blinds or shades shall not be modeled. Permanent shading devices such as fins, overhangs, and lightshelves shall be modeled.

The budget building design shall have identical conditioned floor area and identical exterior dimensions and orientations as the proposed building design, except as noted in (a), (b), and (c) in this clause.

- a. Opaque assemblies such as roof, floors, doors, and walls shall be modeled as having the same heat capacity as the proposed building design but with the minimum U-factor required in Section 5.5 for new buildings or additions and Section 5.1.3 for alterations.
- Roof albedo—All roof surfaces shall be modeled with a reflectivity of 0.3.
- c. Fenestration—No shading projections are to be modeled; fenestration shall be assumed to be flush with the exterior wall or roof. If the fenestration area for new buildings or additions exceeds the maximum allowed by Section 5.5.4.2, the area shall be reduced proportionally along each exposure until the limit set in Section 5.5.4.2 is met. Fenestration U-factor shall be the minimum required for the climate, and the SHGC shall be the maximum allowed for the climate and orientation. The fenestration model for envelope alterations shall reflect the limitations on area, U-factor, and SHGC as described in Section 5.1.3.

Exception: When trade-offs are made between an *addition* and an *existing building* as described in the Exception to Section 4.2.1.2, the envelope assumptions for the *existing building* in the *budget building design* shall reflect existing conditions prior to any revisions that are part of this permit.

TABLE 11.3.1 Modeling Requirements for Calculating Design Energy Cost and Energy Cost Budget (continued)

N	Proposed Building Design (Column A) Design Energy Cost (DEC)	Budget Building Design (Column B) Energy Cost Budget (ECB)
6.	Lighting	
Lig a. b. c.	where a complete lighting system exists, the actual lighting power for each thermal block shall be used in the model. Where a lighting system has been designed, lighting power shall be determined in accordance with Sections 9.1.3 and 9.1.4. Where no lighting exists or is specified, lighting power shall be determined in accordance with the Building Area Method for the appropriate building type. Lighting system power shall include all lighting system components shown or provided for on plans (including lamps, ballasts, task fixtures, and furniture-mounted fixtures).	dure (building area or space function) and categories as the <i>proposed building design</i> with lighting power set equal to the maximum allowed for the corresponding method and category in either Section 9.5 or 9.6. Power for fixtures not included in the <i>LPD</i> calculation shall be modeled identically in the <i>pro-</i>
7.	Thermal Blocks—HVAC Zones Designed	
mo Exe or i ing a. b.	nere HVAC zones are defined on HVAC design drawings, each HVAC zone shall be deled as a separate <i>thermal block</i> . ception: Different HVAC zones may be combined to create a single <i>thermal block</i> identical <i>thermal blocks</i> to which multipliers are applied provided all of the follows conditions are met: The space use classification is the same throughout the <i>thermal block</i> . All HVAC zones in the <i>thermal block</i> that are adjacent to glazed exterior walls face the same orientation or their orientations are within 45 degrees of each other. All of the zones are served by the same HVAC system or by the same kind of HVAC system.	
	Thermal Blocks—HVAC Zones Not Designed	1
be	here the HVAC zones and systems have not yet been designed, <i>thermal blocks</i> shall defined based on similar internal load densities, occupancy, lighting, thermal and the temperature schedules, and in combination with the following guidelines:	Same as proposed building design
a.	Separate <i>thermal blocks</i> shall be assumed for interior and perimeter spaces. Interior spaces shall be those located more than 15 ft from an exterior wall. Perimeter spaces shall be those located closer than 15 ft from an exterior wall.	
b. c.	Separate <i>thermal blocks</i> shall be assumed for spaces adjacent to glazed exterior walls; a separate zone shall be provided for each orientation, except orientations that differ by no more than 45 degrees may be considered to be the same orientation. Each zone shall include all floor area that is 15 ft or less from a glazed perimeter wall, except that floor area within 15 ft of glazed perimeter walls having more than one orientation shall be divided proportionately between zones. Separate <i>thermal blocks</i> shall be assumed for spaces having floors that are in contact with the ground or exposed to ambient conditions from zones that do not share these features. Separate <i>thermal blocks</i> shall be assumed for spaces having exterior ceiling or roof assemblies from zones that do not share these features.	
9.	Thermal Blocks—Multifamily Residential Buildings	
tho uni	sidential spaces shall be modeled using one <i>thermal block</i> per space except that use facing the same orientations may be combined into one <i>thermal block</i> . Corner its and units with roof or floor loads shall only be combined with units sharing se features.	Same as Proposed Design

TABLE 11.3.1 Modeling Requirements for Calculating Design Energy Cost and Energy Cost Budget (continued)

No. Proposed Building Design (Column A)
Design Energy Cost (DEC)

Budget Building Design (Column B) Energy Cost Budget (ECB)

10. HVAC Systems

The HVAC system type and all related performance parameters, such as equipment capacities and efficiencies, in the *proposed building design* shall be determined as follows:

- a. Where a complete HVAC system exists, the model shall reflect the actual system type using actual component capacities and efficiencies.
- b. Where an HVAC system has been designed, the HVAC model shall be consistent with design documents. Mechanical equipment efficiencies shall be adjusted from actual design conditions to the standard rating conditions specified in Section 6.4.1, if required by the simulation model.
- c. Where no heating system exists or no heating system has been specified, the heating system shall be modeled as fossil fuel. The system characteristics shall be identical to the system modeled in the *budget building design*.
- d. Where no cooling system exists or no cooling system has been specified, the cooling system shall be modeled as an air-cooled single-zone system, one unit per *thermal block*. The system characteristics shall be identical to the system modeled in the *budget building design*.

The HVAC system type and related performance parameters for the *budget building design* shall be determined from Figure 11.3.2, the system descriptions in Table 11.3.2A and accompanying notes, and in accord with rules specified in Section 11.3.2 (a)–(j).

11. Service Hot-Water Systems

The service hot-water system type and all related performance parameters, such as equipment capacities and efficiencies, in the *proposed building design* shall be determined as follows:

- a. Where a complete service hot-water system exists, the model shall reflect the actual system type using actual component capacities and efficiencies.
- Where a service hot-water system has been designed, the service hot-water model shall be consistent with design documents.
- c. Where no service hot-water system exists or is specified, no service hot-water heating shall be modeled.

The service hot-water system type and related performance in the *budget building design* shall be identical to the *proposed building design*.

Exceptions:

- a. Where Section 7.5 applies, the boiler shall be split into a separate space heating boiler and hotwater heater with *efficiency* requirements set to the least efficient allowed.
- b. For 24-hour-per-day facilities that meet the prescriptive criteria for use of condenser heat recovery systems described in Section 6.5.6.2, a system meeting the requirements of that section shall be included in the *baseline building design* regardless of the exceptions to Section 6.5.6.2. If a condenser heat recovery system meeting the requirements described in Section 6.5.6.2 cannot be modeled, the requirement for including such a system in the actual building shall be met as a prescriptive requirement in accordance with Section 6.5.6.2 and no heat-recovery system shall be included in the *proposed* or *budget building design*.

12. Miscellaneous Loads

Receptacle, motor, and process loads shall be modeled and estimated based on the building type or space type category and shall be assumed to be identical in the *proposed* and *budget building designs*. These loads shall be included in simulations of the building and shall be included when calculating the *energy cost budget* and *design energy cost*. All end-use load components within and associated with the building shall be modeled, unless specifically excluded by Sections 13 and 14 of Table 11.3.1: including, but not limited to, exhaust fans, parking garage ventilation fans, exterior building lighting, swimming pool heaters and pumps, elevators and escalators, refrigeration equipment, and cooking equipment.

Receptacle, motor, and process loads shall be modeled and estimated based on the building type or space type category and shall be assumed to be identical in the *proposed* and *budget building designs*. These loads shall be included in simulations of the building and shall be included when calculating the *energy cost budget* and *design energy cost*. All enduse load components within and associated with the building shall be modeled, unless specifically excluded by Sections 13 and 14 of Table 11.3.1: including, but not limited to, exhaust fans, parking garage ventilation fans, exterior building lighting, swimming pool heaters and pumps, elevators and escalators, refrigeration equipment, and cooking equipment.

TABLE 11.3.1 Modeling Requirements for Calculating Design Energy Cost and Energy Cost Budget (continued)

No	Proposed Building Design (Column A) Design Energy Cost (DEC)	Budget Building Design (Column B) Energy Cost Budget (ECB)					
13.	13. Modeling Exceptions						
ligh acco Exc	elements of the <i>proposed building design</i> envelope, HVAC, service water heating, ting, and electrical systems shall be modeled in the <i>proposed building design</i> in ordance with the requirements of Sections 1 through 12 of Table 11.3.1. eption: Components and systems in the <i>proposed building design</i> may be uded from the simulation model provided: component energy usage does not affect the energy usage of systems and components that are being considered for trade-off; the applicable prescriptive requirements of Sections 5.5, 6.5, 7.5, and either 9.5 or 9.6 applying to the excluded components are met.						
14.	Modeling Limitations to the Simulation Program						
pose	the simulation program cannot model a component or system included in the <i>pro-</i> and building design, one of the following methods shall be used with the approval the authority having jurisdiction: Ignore the component if the energy impact on the trade-offs being considered is not significant. Model the component substituting a thermodynamically similar component model Model the HVAC system components or systems using the budget building design's HVAC system in accordance with Section 10 of Table 11.3.1. Whichever method is selected, the component shall be modeled identically for both the proposed building design and budget building design models.						

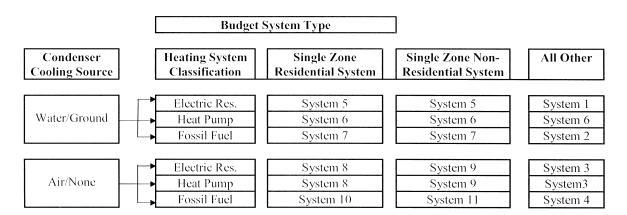


Figure 11.3.2 HVAC systems map.

- **11.3.2 HVAC Systems.** The *HVAC system* type and related performance parameters for the *budget building design* shall be determined from Figure 11.3.2, the system descriptions in Table 11.3.2A and accompanying notes, and the following rules:
- a. Components and parameters not listed in Figure 11.3.2 and Table 11.3.2A or otherwise specifically addressed in this subsection shall be identical to those in the *proposed* building design.
 - **Exception:** Where there are specific requirements in Sections 6.4 and 6.5, the component *efficiency* in the *budget building design* shall be adjusted to the lowest *efficiency* level allowed by the requirement for that component type.
- o. All HVAC and service water heating equipment in the budget building shall be modeled at the minimum efficiency levels, both part load and full load, in accordance with Sections 6.4 and 7.4.
- c. Where efficiency ratings, such as EER and COP, include fan energy, the descriptor shall be broken down into its components so that supply fan energy can be modeled separately. Supply and return/relief system fans shall be modeled as operating at least whenever the spaces served are occupied except as specifically noted in Table 11.3.2A.
- d. Minimum outdoor air ventilation rates shall be the same for both the budget building design and proposed building design. Heat recovery shall be modeled for the budget building design in accordance with Section 6.5.6.1.

TABLE 11.3.2A Budget System Descriptions

System No.	System Type	Fan Control	Cooling Type	Heating Type
1	VAV with parallel fan-powered boxes ^a	VAV ^d	Chilled water ^e	Electric resistance
2	VAV with reheat ^b	VAV^d	Chilled water ^e	Hot-water fossil fuel boiler ^f
3	Packaged VAV with parallel fan-powered boxes ^a	VAV^d	Direct expansion ^c	Electric resistance
4	Packaged VAV with reheat ^b	VAV^d	Direct expansion ^c	Hot-water fossil fuel boilerf
5	Two-pipe fan-coil	Constant volume ⁱ	Chilled water ^e	Electric resistance
6	Water-source heat pump	Constant volume ⁱ	Direct expansion ^c	Electric heat pump and boiler ^g
7	Four-pipe fan-coil	Constant volume ⁱ	Chilled water ^e	Hot-water fossil fuel boilerf
8	Packaged terminal heat pump	Constant volume ⁱ	Direct expansion ^c	Electric heat pumph
9	Packaged rooftop heat pump	Constant volume ⁱ	Direct expansion ^c	Electric heat pumph
10	Packaged terminal air conditioner	Constant volume ⁱ	Direct expansion	Hot-water fossil fuel boilerf
11	Packaged rooftop air conditioner	Constant volume ⁱ	Direct expansion	Fossil fuel furnace

^a VAV with parallel boxes: Fans in parallel VAV fan-powered boxes shall be sized for 50% of the peak design flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan-powered boxes shall be equal to the minimum rate for the space required for ventilation consistent with Section 6.5.2.1 Exception (a)1. Supply air temperature setpoint shall be constant at the design condition [see Section 11.3.2 (h)].

Fossil fuel boiler: For systems using purchased hot water or steam, the boilers are not explicitly modeled and hot water or steam costs shall be based on actual utility rates. Otherwise, the boiler plant shall use the same fuel as the *proposed building design* and shall be natural draft. The *budget building design* boiler plant shall be modeled with a single boiler if the *budget building design* plant load is 600,000 Btu/h and less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Hot-water supply temperature shall be modeled at 180°F design supply temperature and 130°F return temperature. Piping losses shall not be modeled in either building model. Hot-water supply water temperature shall be reset in accordance with Section 6.5.4.3. Pump system power for each pumping system shall be the same as the *proposed building design*; if the *proposed building design* has no hotwater pumps, the *budget building design* pump power shall be 19 W/gpm (equal to a pump operating against a 60 ft head, 60% combined impeller and motor *efficiency*). The hot-water system shall be modeled as primary-only with continuous variable flow. Hot-water pumps shall be modeled as riding the pump curve or with variable speed drives when required by Section 6.5.4.1.

gElectric heat pump and boiler: Water-source heat pumps shall be connected to a common heat pump water loop controlled to maintain temperatures between 60°F and 90°F. Heat rejection from the loop shall be provided by an axial fan closed-circuit evaporative fluid cooler with two-speed fans if required in Section 6.5.5.2. Heat addition to the loop shall be provided by a boiler that uses the same fuel as the proposed building design and shall be natural draft. If no boilers exist in the proposed building design, the budget building boilers shall be fossil fuel. The budget building design boiler plant shall be modeled with a single boiler if the budget building design plant load is 600,000 Btu/h or less and with two equally sized boilers for plant capacities exceeding 600,000 Btu/h. Boilers shall be staged as required by the load. Piping losses shall not be modeled in either building model. Pump system power shall be the same as the proposed building design; if the proposed building design has no pumps, the budget building design pump power shall be 22 W/gpm, which is equal to a pump operating against a 75 ft head, with a 65% combined impeller and motor efficiency. Loop flow shall be variable with flow shutoff at each heat pump when its compressor cycles off as required by Section 6.5.4.4. Loop pumps shall be modeled as riding the pump curve or with variable speed drives when required by Section 6.5.4.1.

h Electric heat pump: Electric air-source heat pumps shall be modeled with electric auxiliary heat. The system shall be controlled with a multi-stage space thermostat and an *outdoor air* thermostat wired to energize auxiliary heat only on the last thermostat stage and when *outdoor air* temperature is less than 40°F.

i Constant volume: Fans shall be controlled in the same manner as in the *proposed building design*; i.e., fan operation whenever the space is occupied or fan operation cycled on calls for heating and cooling. If the fan is modeled as cycling and the fan energy is included in the energy *efficiency* rating of the equipment, fan energy shall not be modeled explicitly.

bVAV with reheat: Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft² of floor area, or the minimum ventilation rate, whichever is larger, consistent with Section 6.5.2.1 Exception (a)2. Supply air temperature shall be reset based on zone demand from the design temperature difference to a 10°F temperature difference under minimum load conditions. Design airflow rates shall be sized for the reset supply air temperature, i.e., a 10°F temperature difference.

^c Direct expansion: The fuel type for the cooling system shall match that of the cooling system in the *proposed building design*.

^dVAV: Constant volume can be modeled if the system qualifies for Exception (b) to Section 6.5.2.1. When the *proposed building design* system has a supply, return, or relief fan motor 25 hp or larger, the corresponding fan in the VAV system of the *budget building design* shall be modeled assuming a variable speed drive. For smaller fans, a forward-curved centrifugal fan with inlet vanes shall be modeled. If the *proposed building design*'s system has a DDC system at the zone level, static pressure setpoint reset based on zone requirements in accordance with Section 6.5.3.2.3 shall be modeled.

e Chilled water: For systems using purchased chilled water, the chillers are not explicitly modeled and chilled water costs shall be based as determined in Section 11.2.3. Otherwise, the budget building design's chiller plant shall be modeled with chillers having the number as indicated in Table 11.3.2B as a function of budget building design chiller plant load and type as indicated in Table 11.3.2C as a function of individual chiller load. Where chiller fuel source is mixed, the system in the budget building design shall have chillers with the same fuel types and with capacities having the same proportional capacity as the proposed building design's chillers for each fuel type. Chilled-water supply temperature shall be modeled at 44°F design supply temperature and 56°F return temperature. Piping losses shall not be modeled in either building model. Chilled-water supply water temperature shall be reset in accordance with Section 6.5.4.3. Pump system power for each pumping system shall be the same as the proposed building design; if the proposed building design has no chilled-water pumps, the budget building design pump power shall be 22 W/gpm (equal to a pump operating against a 75 ft head, 65% combined impeller and motor efficiency). The chilledwater system shall be modeled as primary-only variable flow with flow maintained at the design rate through each chiller using a bypass. Chilled-water pumps shall be modeled as riding the pump curve or with variable-speed drives when required in Section 6.5.4.1. The heat rejection device shall be an axial fan cooling tower with two-speed fans if required in Section 6.5.5. Condenser water design supply temperature shall be 85°F or 10°F approach to design wet-bulb temperature, whichever is lower, with a design temperature rise of 10°F. The tower shall be controlled to maintain a 70°F leaving water temperature where weather permits, floating up to leaving water temperature at design conditions. Pump system power for each pumping system shall be the same as the proposed building design; if the proposed building design has no condenser water pumps, the budget building design pump power shall be 19 W/gpm (equal to a pump operating against a 60 ft head, 60% combined impeller and motor efficiency). Each chiller shall be modeled with separate condenser water and chilled-water pumps interlocked to operate with the associated chiller.

- e. *Budget building* systems as listed in Table 11.3.2A shall have *outdoor air* economizers or water economizers, the same as in the proposed building, in accordance with Section 6.5.1. The high-limit shutoff shall be in accordance with Table 11.3.2D.
- f. If the *proposed building design* system has a preheat coil, the *budget building design's* system shall be modeled with a preheat coil controlled in the same manner.
- g. System design supply air rates for the *budget building design* shall be based on a supply-air-to-room-air temperature difference of 20°F. If return or relief fans are specified in the *proposed building design*, the *budget building design* shall also be modeled with the same fan type sized for the budget system supply fan air quantity less the minimum *outdoor air*, or 90% of the supply fan air quantity, whichever is larger.
- h. Fan system *efficiency* (bhp per cfm of supply air including the effect of belt losses but excluding motor and motor drive losses) shall be the same as the *proposed building design* or up to the limit prescribed in Section 6.5.3.1, whichever is smaller. If this limit is reached, each fan shall be proportionally reduced in brake horsepower until the limit is met. Fan electrical power shall then be determined by adjusting the calculated fan hp by the minimum motor *efficiency* prescribed by Section 10.4 for the appropriate motor size for each fan.
- i. The equipment capacities for the *budget building design* shall be sized proportionally to the capacities in the *proposed building design* based on sizing runs, i.e., the ratio between the capacities used in the annual simulations and the capacities determined by the sizing runs shall be the same for both the *proposed building design* and *budget building design*. Unmet load hours for the *proposed building design* shall not differ from unmet load hours for the *budget building design* by more than 50 hours.
- j. Each *HVAC system* in a *proposed building design* is mapped on a one-to-one correspondence with one of eleven *HVAC systems* in the *budget building design*. To determine the budget building system:
 - 1. Enter Figure 11.3.2 at "Water" if the *proposed building design* system condenser is water or evaporatively cooled; enter at "Air" if the condenser is air-cooled. Closed-circuit dry-coolers shall be considered air-cooled. Systems utilizing district cooling shall be treated as if the condenser water type were "water." If no mechanical cooling is specified or the mechanical cooling system in the *proposed building design* does not require heat rejection, the system shall be treated as if the condenser water type were "Air." For *proposed building designs* with ground-source or groundwater-source heat pumps, the budget system shall be water-source heat pump (System 6).
 - 2. Select the path that corresponds to the *proposed* building design heat source: electric resistance, heat

TABLE 11.3.2B Number of Chillers

Total Chiller Plant Capacity	Number of Chillers
≤300 tons	One
>300 tons, <600 tons	Two sized equally
≥600 tons	Two minimum with chillers added so that no chiller is larger than 800 tons, all sized equally

TABLE 11.3.2C Water Chiller Types

Individual Chiller Electric Plant Capacity Chiller Type		Fossil Fuel Chiller Type	
≤100 tons	Reciprocating	Single-effect absorption, direct fired	
>100 tons, <300 tons	Screw	Double-effect absorption, direct fired	
≥300 tons	Centrifugal	Double-effect absorption, direct fired	

TABLE 11.3.2D Economizer High-Limit Shutoff

Economizer Type	High-Limit Shutoff
Air	Table 6.5.1.1.3B
Water (integrated)	When its operation will no longer reduce HVAC system energy
Water (nonintegrated)	When its operation can no longer provide the cooling load

pump (including air-source and water-source), or fuel-fired. Systems utilizing district heating (steam or hot water) shall be treated as if the heating system type were "Fossil Fuel." Systems with no heating capability shall be treated as if the heating system type were "Fossil Fuel." For systems with mixed fuel heating sources, the system or systems that use the secondary heating source type (the one with the smallest total installed output capacity for the spaces served by the system) shall be modeled identically in the *budget building design* and the primary heating source type shall be used in Figure 11.3.2 to determine budget system type.

3. Select the *budget building design* system category: The system under "Single Zone Residential System" shall be selected if the HVAC system in the proposed design is a single-zone system and serves a residential space. The system under "Single Zone Nonresidential System" shall be selected if the HVAC system in the proposed design is a single-zone system and serves other than residential spaces. The system under "All Other" shall be selected for all other cases.

12. NORMATIVE REFERENCES

Defenses	T:41.
Reference Air Movement and Control Association International,	Title
30 West University Drive, Arlington Heights, IL 60004-1806	
AMCA 500-D-98	Test Methods for Louvers, Dampers, and Shutters
American National Standards Institute, 11 West 42nd Street, New York, NY 10036	
ANSI Z21.10.3-1998	Gas Water Heater, Volume 3, Storage, with Input Ratings above 75,000 Btu/h, Circulating and Instantaneous Water Heaters
ANSI Z21.47-2001	Gas-Fired Central Furnaces (Except Direct Vent and Separated Combustion System Furnaces)
ANSI Z83.8-2002	Gas Unit Heaters and Duct Furnaces
Association of Home Appliance Manufacturers, 20 North Wacker Drive, Chicago, IL 60606	
ANSI/AHAM RAC-1-87	Room Air Conditioners
Air-Conditioning and Refrigeration Institute, 4100 North Fairfax Drive, Suite 200, Arlington, VA 22203	
ARI 210/240-2003	Unitary Air Conditioning and Air-Source Heat Pump Equipment
ARI 310/380-2004	Packaged Terminal Air-Conditioners and Heat Pumps
ARI 340/360-2004	Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment
ARI 365-2002	Commercial and Industrial Unitary Air-Conditioning Condensing Units
ARI 390-2003	Performance Rating of Single Packaged Vertical Air-Conditioners and Heat Pumps
ARI 460-2000	Remote Mechanical Draft Air Cooled Refrigerant Condensers
ARI 550/590-98 with Addenda through July 2002	Water-Chilling Packages Using the Vapor Compression Cycle
ARI 560-2000	Absorption Water Chilling and Water Heating Packages
American Society of Heating, Refrigerating and Air-Conditioning Eng 1791 Tullie Circle, NE, Atlanta, GA 30329	ineers,
ANSI/ASHRAE Standard 62.1-2004	Ventilation for Acceptable Indoor Air Quality
ANSI/ASHRAE Standard 140-2004	Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs
ANSI/ASHRAE 146-1998	Method of Testing for Rating Pool Heaters
American Society for Testing and Materials, 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959	
ASTM C90-03	Standard Specification for Loadbearing Concrete Masonry Units
ASTM C177-97	Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmittance Properties by Means of the Guarded-Hot-Plate Apparatus
ASTM C272-01	Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions
ASTM C518-04	Standard Test Method for Steady-State Thermal Transmittance Properties by Means of the Heat Flow Meter Apparatus
ASTM C835-01	Standard Test Method for Total Hemispherical Emittance of Surfaces From 20°C to 1400°C

Reference	Title		
ASTM C1363-97	Standard Test Method for the Thermal Performance of Building Assemblies by Means of a Hot Box Apparatus		
ASTM C1371-04	Standard Test Method for Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers		
ASTM C1549-04	Standard Test Method for Determination of Solar Reflec- tance Near Ambient Temperature Using a Portable Solar Reflectometer		
ASTM E1980 (2001)	Standard Practice for Calculating Solar Reflectance Index of Horizontal and Low Sloped Opaque Surfaces		
ASTM E408-71 (2002)	Test Methods for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques		
ASTM E903-96	Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres		
ASTM E1175-87 (2003)	Standard Test Method for Determining Solar or Photopic Reflectance, Transmittance, and Absorptance of Materials Using a Large Diameter Integrating Sphere		
ASTM E1918-97	Standard Test Method for Measuring Solar Reflectance of Horizontal or Low-Sloped Surfaces in the Field		
Cooling Technology Institute, 2611 FM 1960 West, Suite A-101, Houston, TX 77068-3730; P.O. Box 7.	3383, Houston, TX 77273-3383		
CTI ATC-105 (00)	Acceptance Test Code for Water Cooling Towers		
CTI STD-201 (04)	Standard for Certification of Water Cooling Tower Thermal Performance		
Hydronics Institute, Division of Gama, 35 Russo Place, P.O. Box 218, Berkeley Heights, NJ 07922			
BTS 2000.	Testing Standard Method to Determine Efficiency of Commercial Space Heating Boilers		
International Organization for Standardization, 1, rue de Varembe, Case postale 56, CH-1211 Geneve 20, Switzerland			
ISO 13256-1 (1998)	Water-Source Heat Pumps—Testing and Rating for Performance—Part 1: Water-to-Air and Brine-to-Air Heat Pumps		
Door and Access Systems Manufacturers Association (DASMA), 1300 Sumner Avenue, Cleveland, OH 44115-2851			
ANSI/DASMA 105-92 (R 1998)	Test Method for Thermal Transmittance and Air Infiltration of Garage Doors		
National Electrical Manufacturers Association, 1300 N. 17th Street, Suite 1847, Rosslyn, VA 22209			
ANSI/NEMA MG 1-1993	Motors and Generators		
National Fire Protection Association, 1 Battery March Park, P.O. Box 9101, Quincy, MA 02269-9101			
NFPA 96-94	Ventilation Control and Fire Protection of Commercial Cooking Operations		
National Fenestration Rating Council, 1300 Spring Street, Suite 500, Silver Springs, MD 20910			
NFRC 100-2004	Procedure for Determining Fenestration Product U-Factors		
NFRC 200-2004	Procedure for Determining Fenestration Product Solar Heat Gain Coefficients and Visible Transmittance at Normal Incidence		
NFRC 300-2004	Standard Test Method for Determining the Solar Optical Properties of Glazing Materials and Systems		

Reference	Title
NFRC 400-2004	Procedure for Determining Fenestration Product Air Leakage
Underwriters Laboratories, Inc., 333 Pfingsten Rd., Northbrook, IL 60062	
UL 181A-94	Closure Systems for Use with Rigid Air Ducts and Air Connectors
UL 181B-95	Closure Systems for Use with Flexible Air Ducts and Air Connectors
UL 727-94	UL Standard for Safety—Oil Fired Central Furnaces
UL 731-95	UL Standard for Safety—Oil-Fired Unit Heaters
U.S. Department of Energy 1000 Independence Avenue, SW, Washington, DC 20585	
10 CFR Part 430, App N	Uniform Test Method for Measuring the Energy Consumption of Furnaces
42 USC 6831, et seq., Public Law 102-486	Energy Policy Act of 1992

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX A

RATED R-VALUE OF INSULATION AND ASSEMBLY U-FACTOR, C-FACTOR, AND F-FACTOR DETERMINATIONS

A1. GENERAL

A1.1 Pre-Calculated Assembly U-Factors, C-Factors, F-Factors, or Heat Capacities. The *U-factors, C-factors, F-factors,* and *heat capacities* for typical construction assemblies are included in Sections A2 through A8. These values shall be used for all calculations unless otherwise allowed by Section A1.2. Interpolation between values in a particular table in Normative Appendix A is allowed for *rated R-values of insulation,* including insulated sheathing. Extrapolation beyond values in a table in Normative Appendix A is not allowed.

A1.2 Applicant-Determined Assembly U-Factors, C-Factors, F-Factors, or Heat Capacities. If the *building official* determines that the proposed construction assembly is not adequately represented in Sections A2 through A8, the applicant shall determine appropriate values for the assembly using the assumptions in Section A9. An assembly is deemed to be adequately represented if

- a. the interior structure, hereafter referred to as the *base* assembly, for the *class of construction* is the same as described in Sections A2 through A8 and
- b. changes in exterior or interior surface building materials added to the base assembly do not increase or decrease the R-value by more than 2 from that indicated in the descriptions in Sections A2 through A8.

Insulation, including insulated sheathing, is not considered a *building material*.

A2. ROOFS

A2.1 General. The buffering effect of suspended ceilings or attic spaces shall not be included in *U-factor* calculations.

A2.2 Roofs with Insulation Entirely Above Deck

- **A2.2.1 General.** For the purpose of Section A1.2, the base assembly is *continuous insulation* over a structural deck. The *U-factor* includes R-0.17 for exterior air film, R-0 for metal deck, and R-0.61 for interior air film heat flow up. Added insulation is continuous and uninterrupted by framing. The framing factor is zero.
- **A2.2.2** Rated R-Value of Insulation. For roofs with insulation entirely above deck, the rated R-value of insulation is for continuous insulation.

Exception: Interruptions for framing and pads for mechanical equipment are permitted with a combined total area not exceeding one percent of the total opaque assembly area.

A2.2.3 U-Factor. *U-factors* for *roofs with insulation entirely above deck* shall be taken from Table A2.2. It is not acceptable to use these *U-factors* if the insulation is not entirely above deck or not continuous.

TABLE A2.2 Assembly U-Factors for Roofs with Insulation Entirely Above Deck

Rated R-Value of Insulation Alone	Overall U-Factor for Entire Assembly		
R-0	U-1.282		
R-1	U-0.562		
R-2	U-0.360		
R-3	U-0.265		
R-4	U-0.209		
R-5	U-0.173		
R-6	U-0.147		
R-7	U-0.129		
R-8	U-0.114		
R-9	U-0.102		
R-10	U-0.093		
R-11	U-0.085		
R-12	U-0.078		
R-13	U-0.073		
R-14	U-0.068		
R-15	U-0.063		
R-16	U-0.060		
R-17	U-0.056		
R-18	U-0.053		
R-19	U-0.051		
R-20	U-0.048		
R-21	U-0.046		
R-22	U-0.044		
R-23	U-0.042		
R-24	U-0.040		
R-25	U-0.039		
R-26	U-0.037		
R-27	U-0.036		
R-28	U-0.035		
R-29	U-0.034		
R-30	U-0.032		
R-35	U-0.028		
R-40	U-0.025		
R-45	U-0.022		
R-50	U-0.020		
R-55	U-0.018		
R-60	U-0.016		

A2.3 Metal Building Roofs

A2.3.1 General. For the purpose of Section A1.2, the base assembly is a *roof* where the insulation is draped over the steel structure (purlins) and then compressed when the metal roof panels are attached to the steel structure (purlins). Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing.

A2.3.2 Rated R-Value of Insulation

A2.3.2.1 The first *rated R-value of insulation* is for insulation draped over purlins and then compressed when the metal roof panels are attached, or for insulation hung between the purlins. A minimum 1 in. thermal spacer block between

the purlins and the metal roof panels is required when specified in Table A2.3.

A2.3.2.2 For double-layer installations, the second *rated R-value of insulation* is for insulation installed parallel to the purlins.

A2.3.2.3 For continuous insulation (e.g., insulation boards or blankets), it is assumed that the insulation is installed below the purlins and is uninterrupted by framing members. Insulation exposed to the *conditioned space* or *semiheated space* shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.

TABLE A2.3 Assembly U-Factors for Metal Building Roofs

Insulation	Rated R-Value of			Overall U-Factor for Assembly of Base Roof Plus Continuous Insulation (Uninterrupted by Framing)					
Syctom	Insulation	Insulation	for Entire Base Roof Assembly	Rated R-Value of Continuous Insulation					
				R-5.6	R-11.2	R-16.8	R-22.4	R-28.0	R-33.6
Standing Sea	m Roofs with Th	nermal Spacer	Blocks						
	None	0	U-1.280	0.162	0.087	0.059	0.045	0.036	0.030
	R-6	6	U-0.167	0.086	0.058	0.044	0.035	0.029	0.025
	R-10	10	U-0.097	0.063	0.046	0.037	0.031	0.026	0.023
Single Layer	R-11	11	U-0.092	0.061	0.045	0.036	0.030	0.026	0.022
Layer	R-13	13	U-0.083	0.057	0.043	0.035	0.029	0.025	0.022
	R-16	16	U-0.072	0.051	0.040	0.033	0.028	0.024	0.021
	R-19	19	U-0.065	0.048	0.038	0.031	0.026	0.023	0.020
	R-10 + R-10	20	U-0.063	0.047	0.037	0.031	0.026	0.023	0.020
	R-10 + R-11	21	U-0.061	0.045	0.036	0.030	0.026	0.023	0.020
	R-11 + R-11	22	U-0.060	0.045	0.036	0.030	0.026	0.022	0.020
	R-10 + R-13	23	U-0.058	0.044	0.035	0.029	0.025	0.022	0.020
	R-11 + R-13	24	U-0.057	0.043	0.035	0.029	0.025	0.022	0.020
Double Layer	R-13 + R-13	26	U-0.055	0.042	0.034	0.029	0.025	0.022	0.019
Layer	R-10 + R-19	29	U-0.052	0.040	0.033	0.028	0.024	0.021	0.019
	R-11 + R-19	30	U-0.051	0.040	0.032	0.027	0.024	0.021	0.019
	R-13 + R-19	32	U-0.049	0.038	0.032	0.027	0.023	0.021	0.019
	R-16 + R-19	35	U-0.047	0.037	0.031	0.026	0.023	0.020	0.018
	R-19 + R-19	38	U-0.046	0.037	0.030	0.026	0.023	0.020	0.018
Thru-Fasten	ed without Theri	nal Spacer Blo	cks						
	R-10	10	U-0.153						
	R-11	11	U-0.139						
	R-13	13	U-0.130						
	R-16	16	U-0.106						
	R-19	19	U-0.098						
Filled Cavity	with Thermal S	pacer Blocks							
	R-19 + R-10	29	U-0.041	0.033	0.028	0.024	0.021	0.020	0.017
Multiple R-v	alues are listed in	order from insie	de to outside.)					

A2.3.3 U-factor. *U-factors* for *metal building roofs* shall be taken from Table A2.3 It is not acceptable to use these *U-factors* if additional insulated sheathing is not continuous.

A2.4 Attic Roofs with Wood Joists

A2.4.1 General. For the purpose of Section A1.2, the base attic roof assembly is a roof with nominal 4 in. deep wood as the lower chord of a roof truss or ceiling joist. The ceiling is attached directly to the lower chord of the truss and the attic space above is ventilated. Insulation is located directly on top of the ceiling, first filling the cavities between the wood and then later covering both the wood and cavity areas. No credit is given for roofing materials. The single-rafter roof is similar to the base attic roof, with the key difference being that there is a single, deep rafter to which both the roof and the ceiling are attached. The heat flow path through the rafter is calculated to be the same depth as the insulation. The U-factors include R-0.46 for semi-exterior air film, R-0.56 for 0.625 in. gypsum board, and R-0.61 for interior air film heat flow up. U-factors are provided for the following configurations:

- a. *Attic roof, standard framing:* insulation is tapered around the perimeter with a resultant decrease in thermal resistance. Weighting factors are 85% full-depth insulation, 5% half-depth insulation, and 10% joists.
- Attic roof, advanced framing: full and even depth of insulation extending to the outside edge of exterior walls. Weighting factors are 90% full-depth insulation and 10% joists.
- c. Single-rafter roof: an attic roof where the roof sheathing and ceiling are attached to the same rafter. Weighting factors are 90% full-depth insulation and 10% joists.

A2.4.2 Rated R-Value of Insulation

- **A2.4.2.1** For attics and other roofs, the rated R-value of insulation is for insulation installed both inside and outside the roof or entirely inside the roof cavity.
- **A2.4.2.2** Occasional interruption by framing members is allowed but requires that the framing members be covered with insulation when the depth of the insulation exceeds the depth of the framing cavity.
- **A2.4.2.3** Insulation in such roofs shall be permitted to be tapered at the eaves where the building structure does not allow full depth.
- **A2.4.2.4** For *single-rafter roofs*, the requirement is the lesser of the values for *attics and other roofs* and those listed in Table A2.4.2.
- **A2.4.3** U-factors for Attic Roofs with Wood Joists. *U-factors* for *attic roofs* with wood joists shall be taken from Table A2.4. It is not acceptable to use these *U-factors* if the framing is not wood. For *attic roofs* with steel joists, see Section A2.5.

A2.5 Attic Roofs with Steel Joists

A2.5.1 General. For the purpose of Section A1.2, the base assembly is a roof supported by steel joists with insula-

TABLE A2.4 Assembly U-Factors for Attic Roofs with Wood Joists

Rated R-Value of Insulation Alone	Overall U-Factor for Entire Assembly				
Wood-Framed Attic, Standard	Wood-Framed Attic, Standard Framing				
None	U-0.613				
R-11	U-0.091				
R-13	U-0.081				
R-19	U-0.053				
R-30	U-0.034				
R-38	U-0.027				
R-49	U-0.021				
R-60	U-0.017				
R-71	U-0.015				
R-82	U-0.013				
R-93	U-0.011				
R-104	U-0.010				
R-115	U-0.009				
R-126	U-0.008				
Wood-Framed Attic, Advanced	Framing				
None	U-0.613				
R-11	U-0.088				
R-13	U-0.078				
R-19	U-0.051				
R-30	U-0.032				
R-38	U-0.026				
R-49	U-0.020				
R-60	U-0.016				
R-71	U-0.014				
R-82	U-0.012				
R-93	U-0.011				
R-104	U-0.010				
R-115	U-0.009				
R-126	U-0.008				
Wood Joists, Single-rafter Roof	•				
None	U-0.417				
R-11	U-0.088				
R-13	U-0.078				
R-15	U-0.071				
R-19	U-0.055				
R-21	U-0.052				
R-25	U-0.043				
R-30	U-0.036				
R-38	U-0.028				

TABLE A2.4.2 Single-Rafter Roofs

Minimum Insulation R-Value or Maximum Assembly U-Factor				
Zone	Wood Rafter Depth, d (Actual)			
	$d \le 8$ in.	$8 < d \le 10$ in.	$10 < d \le 12$ in.	
1–7	R-19 U-0.055	R-30 U-0.036	R-38 U-0.028	
8	R-21 U-0.052	R-30 U-0.036	R-38 U-0.028	

tion between the joists. The assembly represents a *roof* in many ways similar to a *roof with insulation entirely above deck* and a *metal building roof*. It is distinguished from the *metal building roof* category in that there is no metal exposed to the exterior. It is distinguished from the *roof with insulation entirely above deck* in that the insulation is located below the deck and is interrupted by metal trusses that provide thermal bypasses to the insulation. The *U-factors* include R-0.17 for exterior air film, R-0 for metal deck, and R-0.61 for interior air film heat flow up. The performance of the insulation/framing layer is calculated using the values in Table A9.2A.

A2.5.2 *U-factors* for *attic roofs* with steel joists shall be taken from Table A2.5. It is acceptable to use these *U-factors* for any *attic roof* with steel joists.

A3. ABOVE-GRADE WALLS

A3.1 Mass Wall

A3.1.1 General. For the purpose of Section A1.2, the base assembly is a masonry or concrete *wall. Continuous insulation* is installed on the interior or exterior or within the masonry units, or it is installed on the interior or exterior of the concrete. The *U-factors* include R-0.17 for exterior air film and R-0.68 for interior air film, vertical surfaces. For insulated walls, the U-factor also includes R-0.45 for 0.5 in. gypsum board. *U-factors* are provided for the following configurations:

- a. Concrete *wall*: 8 in. normal weight concrete wall with a density of 145 lb/ft³.
- b. Solid grouted concrete block wall: 8 in. medium weight ASTM C90 concrete block with a density of 115 lb/ft³ and solid grouted cores.
- c. Partially grouted concrete block *wall*: 8 in. medium weight ASTM C90 concrete block with a density of 115 lb/ft³ having reinforcing steel every 32 in. vertically and every 48 in. horizontally, with cores grouted in those areas only. Other cores are filled with insulating material only if there is no other insulation.

A3.1.2 Mass Wall Rated R-Value of Insulation

A3.1.2.1 Mass wall *HC* shall be determined from Table A3.1B or A3.1C.

A3.1.2.2 The *rated R-value of insulation* is for *continuous insulation* uninterrupted by framing other than 20 gauge 1 in.

TABLE A2.5 Assembly U-Factors for Attic Roofs with Steel Joists (4.0 ft on Center)

(
Rated R-Value of Insulation Alone	Overall U-Factor for Entire Assembly			
R-0	U-1.282			
R-4	U-0.215			
R-5	U-0.179			
R-8	U-0.120			
R-10	U-0.100			
R-11	U-0.093			
R-12	U-0.086			
R-13	U-0.080			
R-15	U-0.072			
R-16	U-0.068			
R-19	U-0.058			
R-20	U-0.056			
R-21	U-0.054			
R-24	U-0.049			
R-25	U-0.048			
R-30	U-0.041			
R-35	U-0.037			
R-38	U-0.035			
R-40	U-0.033			
R-45	U-0.031			
R-50	U-0.028			
R-55	U-0.027			

metal clips spaced no closer than 24 in. on center horizontally and 16 in. on center vertically.

A3.1.2.3 Where other framing, including metal and wood studs, is used, compliance shall be based on the maximum assembly *U-factor*.

A3.1.2.4 Where *rated R-value of insulation* is used for concrete sandwich panels, the insulation shall be continuous throughout the entire panel.

A3.1.3 Mass Wall U-Factor

A3.1.3.1 *U-factors* for *mass walls* shall be taken from Table A3.1A or determined by the procedure in this subsection. It is acceptable to use the *U-factors* in Table A3.1A for all *mass walls*, provided that the grouting is equal to or less than that specified. *HC* for *mass walls* shall be taken from Table A3.1B or A3.1C.

Exception: For *mass walls*, where the requirement in Tables 5.5-1 through 5.5-8 is for a maximum assembly U-0.151 followed by footnote "a," ASTM C90 concrete block walls, ungrouted or partially grouted at 32 in. or less on center vertically and 48 in. or less on center horizontally, shall have ungrouted cores filled with material having a maximum thermal conductivity

TABLE A3.1A Assembly U-Factors for Above-Grade Concrete Walls and Masonry Walls

Framing Type and Depth	Rated R-Value of Insulation Alone	Assembly U-Factors for 8 in. Normal Weight 145 lb/ft ³ Solid Concrete Walls	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Solid Grouted	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Partially Grouted (Cores Uninsulated Except Where Specified)
	R-0	U-0.740	U-0.580	U-0.480
No Framing	Ungrouted Cores Filled with Loose-Fill Insulation	N/A	N/A	U-0.350
Continuous N	Metal Framing at 24 in. on C	enter Horizontally		
3.5 in.	R-11.0	U-0.168	U-0.158	U-0.149
3.5 in.	R-13.0	U-0.161	U-0.152	U-0.144
3.5 in.	R-15.0	U-0.155	U-0.147	U-0.140
4.5 in.	R-17.1	U-0.133	U-0.126	U-0.121
4.5 in.	R-22.5	U-0.124	U-0.119	U-0.114
4.5 in.	R-25.2	U-0.122	U-0.116	U-0.112
5.0 in.	R-19.0	U-0.122	U-0.117	U-0.112
5.0 in.	R-25.0	U-0.115	U-0.110	U-0.106
5.0 in.	R-28.0	U-0.112	U-0.107	U-0.103
5.5 in.	R-19.0	U-0.118	U-0.113	U-0.109
5.5 in.	R-20.9	U-0.114	U-0.109	U-0.105
5.5 in.	R-21.0	U-0.113	U-0.109	U-0.105
5.5 in.	R-27.5	U-0.106	U-0.102	U-0.099
5.5 in.	R-30.8	U-0.104	U-0.100	U-0.096
6.0 in.	R-22.8	U-0.106	U-0.102	U-0.098
6.0 in.	R-30.0	U-0.099	U-0.095	U-0.092
6.0 in.	R-33.6	U-0.096	U-0.093	U-0.090
6.5 in.	R-24.7	U-0.099	U-0.096	U-0.092
7.0 in.	R-26.6	U-0.093	U-0.090	U-0.087
7.5 in.	R-28.5	U-0.088	U-0.085	U-0.083
8.0 in.	R-30.4	U-0.083	U-0.081	U-0.079
in. Metal C	lips at 24 in. on Center Hori	zontally and 16 in. Vertically		
1.0 in.	R-3.8	U-0.210	U-0.195	U-0.182
1.0 in.	R-5.0	U-0.184	U-0.172	U-0.162
1.0 in.	R-5.6	U-0.174	U-0.163	U-0.154
1.5 in.	R-5.7	U-0.160	U-0.151	U-0.143
1.5 in.	R-7.5	U-0.138	U-0.131	U-0.125
1.5 in.	R-8.4	U-0.129	U-0.123	U-0.118
2.0 in.	R-7.6	U-0.129	U-0.123	U-0.118
2.0 in.	R-10.0	U-0.110	U-0.106	U-0.102
2.0 in.	R-11.2	U-0.103	U-0.099	U-0.096
2.5 in.	R-9.5	U-0.109	U-0.104	U-0.101
2.5 in.	R-12.5	U-0.092	U-0.089	U-0.086
2.5 in.	R-14.0	U-0.086	U-0.083	U-0.080
3.0 in.	R-11.4	U-0.094	U-0.090	U-0.088
3.0 in.	R-15.0	U-0.078	U-0.076	U-0.074
3.0 in.	R-16.8	U-0.073	U-0.071	U-0.069
3.5 in.	R-13.3	U-0.082	U-0.080	U-0.077
3.5 in.	R-17.5	U-0.069	U-0.067	U-0.065
3.5 in.	R-19.6	U-0.064	U-0.062	U-0.061
4.0 in.	R-15.2	U-0.073	U-0.071	U-0.070
4.0 in.	R-20.0	U-0.061	U-0.060	U-0.058
4.0 in.	R-22.4	U-0.057	U-0.056	U-0.054

TABLE A3.1A Assembly U-Factors for Above-Grade Concrete Walls and Masonry Walls (continued)

Framing Type and Depth	Rated R-Value of Insulation Alone	Assembly U-Factors for 8 in. Normal Weight 145 lb/ft ³ Solid Concrete Walls	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Solid Grouted	Assembly U-Factors for 8 in. Medium Weight 115 lb/ft ³ Concrete Block Walls: Partially Grouted (Cores Uninsulated Except Where Specified)
	R-0	U-0.740	U-0.580	U-0.480
No Framing	Ungrouted Cores Filled with Loose-Fill Insulation	N/A	N/A	U-0.350
1 in. Metal Cl	lips at 24 in. on Center Horiz	contally and 16 in. Vertically (con	tinued)	
5.0 in.	R-28.0	U-0.046	U-0.046	U-0.045
6.0 in.	R-33.6	U-0.039	U-0.039	U-0.038
7.0 in.	R-39.2	U-0.034	U-0.034	U-0.033
8.0 in.	R-44.8	U-0.030	U-0.030	U-0.029
9.0 in.	R-50.4	U-0.027	U-0.027	U-0.026
10.0 in.	R-56.0	U-0.024	U-0.024	U-0.024
11.0 in.	R-61.6	U-0.022	U-0.022	U-0.022
Continuous I	nsulation Uninterrupted by	Framing		
No framing	R-1.0	U-0.425	U-0.367	U-0.324
No framing	R-2.0	U-0.298	U-0.269	U-0.245
No framing	R-3.0	U-0.230	U-0.212	U-0.197
No framing	R-4.0	U-0.187	U-0.175	U-0.164
No framing	R-5.0	U-0.157	U-0.149	U-0.141
No framing	R-6.0	U-0.136	U-0.129	U-0.124
No framing	R-7.0	U-0.120	U-0.115	U-0.110
No framing	R-8.0	U-0.107	U-0.103	U-0.099
No framing	R-9.0	U-0.097	U-0.093	U-0.090
No framing	R-10.0	U-0.088	U-0.085	U-0.083
No framing	R-11.0	U-0.081	U-0.079	U-0.076
No framing	R-12.0	U-0.075	U-0.073	U-0.071
No framing	R-13.0	U-0.070	U-0.068	U-0.066
No framing	R-14.0	U-0.065	U-0.064	U-0.062
No framing	R-15.0	U-0.061	U-0.060	U-0.059
No framing	R-16.0	U-0.058	U-0.056	U-0.055
No framing	R-17.0	U-0.054	U-0.053	U-0.052
No framing	R-18.0	U-0.052	U-0.051	U-0.050
No framing	R-19.0	U-0.049	U-0.048	U-0.047
No framing	R-20.0	U-0.047	U-0.046	U-0.045
No framing	R-21.0	U-0.045	U-0.044	U-0.043
No framing	R-22.0	U-0.043	U-0.042	U-0.042
No framing	R-23.0	U-0.041	U-0.040	U-0.040
No framing	R-24.0	U-0.039	U-0.039	U-0.038
No framing	R-25.0	U-0.038	U-0.037	U-0.037
No framing	R-30.0	U-0.032	U-0.032	U-0.031
No framing	R-35.0	U-0.028	U-0.027	U-0.027
No framing	R-40.0	U-0.024	U-0.024	U-0.024
No framing	R-45.0	U-0.022	U-0.021	U-0.021
No framing	R-50.0	U-0.019	U-0.019	U-0.019
No framing	R-55.0	U-0.018	U-0.018	U-0.018
No framing	R-60.0	U-0.016	U-0.016	U-0.016

TABLE A3.1B Assembly U-Factors, C-Factors, R_u , R_c , and HC for Concrete

		IABLE A	3.1D AS	Sembly U-	raciois, C		R _u , R _c , and	ne ioi co	liciele		
Density, lb/ft ³	Properties	_		_	_		ness, in.		10		
10/10	TT C	3	4	5	6	7	8	9	10	11	12
	U-factor C-factor	0.22	0.17	0.14	0.12	0.10	0.09	0.08	0.07	0.07	0.06
20		0.27 4.60	0.20 5.85	0.16 7.10	0.13 8.35	0.11 9.60	0.10 10.85	0.09	0.08	0.07	0.07 15.85
20	R_u	3.75	5.00	6.25	7.50	9.60 8.75	10.83	12.10 11.25	13.35 12.50	14.60 13.75	15.83
	$egin{aligned} R_c \ HC \end{aligned}$	1.0	1.3	1.7	2.0	2.3	2.7	3.0	3.3	3.7	4.0
	U-factor	0.28	0.22	0.19	0.16	0.14	0.12	0.11	0.10	0.09	0.09
	C-factor	0.37	0.28	0.22	0.18	0.14	0.14	0.12	0.11	0.10	0.09
30	R_u	3.58	4.49	5.40	6.30	7.21	8.12	9.03	9.94	10.85	11.76
	R_c	2.73	3.64	4.55	5.45	6.36	7.27	8.18	9.09	10.00	10.91
	НС	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0
	U-factor	0.33	0.27	0.23	0.19	0.17	0.15	0.14	0.13	0.11	0.11
	C-factor	0.47	0.35	0.28	0.23	0.20	0.18	0.16	0.14	0.13	0.12
40	R_u	2.99	3.71	4.42	5.14	5.85	6.56	7.28	7.99	8.71	9.42
	R_c	2.14	2.86	3.57	4.29	5.00	5.71	6.43	7.14	7.86	8.57
	HC	2.0	2.7	3.3	4.0	4.7	5.3	6.0	6.7	7.3	8.0
	U-factor	0.38	0.31	0.26	0.23	0.20	0.18	0.16	0.15	0.14	0.13
	C-factor	0.57	0.43	0.34	0.28	0.24	0.21	0.19	0.17	0.15	0.14
50	R_u	2.61	3.20	3.79	4.38	4.97	5.56	6.14	6.73	7.32	7.91
	R_c	1.76	2.35	2.94	3.53	4.12	4.71	5.29	5.88	6.47	7.06
	HC	2.5	3.3	4.2	5.0	5.8	6.7	7.5	8.3	9.2	10.0
	U-factor	0.65	0.56	0.50	0.44	0.40	0.37	0.34	0.31	0.29	0.27
	C-factor	1.43	1.08	0.86	0.71	0.61	0.54	0.48	0.43	0.39	0.36
85	R_u	1.55	1.78	2.01	2.25	2.48	2.71	2.94	3.18	3.41	3.64
	R_c	0.70	0.93	1.16	1.40	1.63	1.86	2.09	2.33	2.56	2.79
	НС	4.3	5.7	7.1	8.5	9.9	11.3	12.8	14.2	15.6	17.0
	U-factor	0.72	0.64	0.57	0.52	0.48	0.44	0.41	0.38	0.36	0.33
	C-factor	1.85	1.41	1.12	0.93	0.80	0.70	0.62	0.56	0.51	0.47
95	R_u	1.39	1.56	1.74	1.92	2.10	2.28	2.46	2.64	2.81	2.99
	R_c	0.54	0.71	0.89	1.07	1.25	1.43	1.61	1.79	1.96	2.14
	HC	4.8	6.3	7.9	9.5	11.1	12.7	14.3	15.8	17.4	19.0
	U-factor	0.79	0.71	0.65	0.59	0.54	0.51	0.47	0.44	0.42	0.39
105	C-factor	2.38	1.79	1.43	1.18	1.01	0.88	0.79	0.71	0.65	0.59
105	R_u	1.27	1.41	1.56	1.70	1.84	1.98	2.12	2.26	2.40	2.54 1.69
	$egin{aligned} R_c \ HC \end{aligned}$	0.42 5.3	0.56 7.0	0.70 8.8	0.85 10.5	0.99 12.3	1.13 14.0	1.27 15.8	1.41 17.5	1.55 19.3	21.0
	U-factor	0.84	0.77	0.70	0.65	0.61	0.57	0.53	0.50	0.48	0.45
	C-factor	2.94	2.22	1.75	1.47	1.25	1.10	0.53	0.88	0.48	0.43
115	R_u	1.19	1.30	1.73	1.53	1.65	1.76	1.87	1.99	2.10	2.21
113	R_c	0.34	0.45	0.57	0.68	0.80	0.91	1.02	1.14	1.25	1.36
	HC	5.8	7.7	9.6	11.5	13.4	15.3	17.3	19.2	21.1	23.0
	U-factor	0.88	0.82	0.76	0.71	0.67	0.63	0.60	0.56	0.53	0.51
	C-factor	3.57	2.70	2.17	1.79	1.54	1.35	1.20	1.03	0.98	0.90
125	R_u	1.13	1.22	1.31	1.41	1.50	1.59	1.68	1.78	1.87	1.96
120	R_c	0.28	0.37	0.46	0.56	0.65	0.74	0.83	0.93	1.02	1.11
	НС	6.3	8.3	10.4	12.5	14.6	16.7	18.8	20.8	22.9	25.0
	U-factor	0.93	0.87	0.82	0.77	0.73	0.69	0.66	0.63	0.60	0.57
	C-factor	4.55	3.33	2.70	2.22	1.92	1.67	1.49	1.33	1.22	1.11
135	R_u	1.07	1.15	1.22	1.30	1.37	1.45	1.52	1.60	1.67	1.75
	R_c^u	0.22	0.30	0.37	0.45	0.52	0.60	0.67	0.75	0.82	0.90
	НС	6.8	9.0	11.3	13.5	15.8	18.0	20.3	22.5	24.8	27.0
	U-factor	0.96	0.91	0.86	0.81	0.78	0.74	0.71	0.68	0.65	0.63
	C-factor	5.26	4.00	3.23	2.63	2.27	2.00	1.79	1.59	1.45	1.33
144	R_u	1.04	1.10	1.16	1.23	1.29	1.35	1.41	1.48	1.54	1.60
	R_c	0.19	0.25	0.31	0.38	0.44	0.50	0.56	0.63	0.69	0.75
	HC	7.2	9.6	12.0	14.4	16.8	19.2	21.6	24.0	26.4	28.8

The U-factors and R_u include standard air film resistances.

The C-factors and R_c are for the same assembly without air film resistances.

Note that the following assemblies do not qualify as a mass wall or mass floor:

³ in. thick concrete with densities of 85, 95, 125, and 135 lb/ft³.

TABLE A3.1C Assembly U-Factors, C-Factors, R_u , R_c , and HC for Concrete Block Walls

Product Size,	Density,				te Block Grouting and C		
in.	lb/ft ³	Properties	Solid	Partly Grouted,	Partly Grouted,	Unreinforced,	Unreinforced
		II.C.	Grouted	Cells Empty	Cells Insulated	Cells Empty	Cells Insulate
		U-factor C-factor	0.57	0.46	0.34	0.40 0.60	0.20
	85		1.11	0.75 2.18	0.47 2.97	2.52	0.23 5.13
	83	R_u	1.75		2.97	2.52 1.67	4.28
		R_c HC	0.90 10.9	1.33 6.7	7.0	4.2	4.28
=		U-factor	0.61	0.49	0.36	0.42	0.22
		C-factor	1.25	0.49	0.53	0.65	0.22
	95					2.38	
	93	R_u	1.65	2.06	2.75		4.61
		R_c	0.80	1.21	1.90	1.53	3.76
_		HC U-factor	11.4 0.64	7.2 0.51	7.5 0.39	4.7 0.44	5.1 0.24
		C-factor		0.91	0.58	0.71	0.24
	105		1.38				
	105	R_u	1.57	1.95	2.56	2.26	4.17
		R_c	0.72	1.10	1.71	1.41	3.32
in. block -		HC	11.9	7.7	7.9	5.1	5.6
		U-factor	0.66	0.54	0.41	0.46	0.26
	115	C-factor	1.52	0.98	0.64	0.76	0.34
	115	R_u	1.51	1.87	2.41	2.16	3.79
		R_c	0.66	1.02	1.56	1.31	2.94
_		HC	12.3	8.1	8.4	5.6	6.0
		U-factor	0.70	0.56	0.45	0.49	0.30
	125	C-factor	1.70	1.08	0.73	0.84	0.40
	125	R_u	1.44	1.78	2.23	2.04	3.38
		R_c	0.59	0.93	1.38	1.19	2.53
_		HC	12.8	8.6	8.8	6.0	6.5
		U-factor	0.73	0.60	0.49	0.53	0.35
		C-factor	1.94	1.23	0.85	0.95	0.49
	135	R_u	1.36	1.67	2.02	1.90	2.89
		R_c	0.51	0.82	1.17	1.05	2.04
		НС	13.2	9.0	9.3	6.5	6.9
		U-factor	0.49	0.41	0.28	0.37	0.15
		C-factor	0.85	0.63	0.37	0.53	0.17
	85	R_u	2.03	2.43	3.55	2.72	6.62
		R_c	1.18	1.58	2.70	1.87	5.77
_		НС	15.0	9.0	9.4	5.4	6.0
		U-factor	0.53	0.44	0.31	0.39	0.17
		C-factor	0.95	0.70	0.41	0.58	0.20
	95	R_u	1.90	2.29	3.27	2.57	5.92
		R_c	1.05	1.44	2.42	1.72	5.07
_		НС	15.5	9.6	10.0	6.0	6.6
_		U-factor	0.55	0.46	0.33	0.41	0.19
		C-factor	1.05	0.76	0.46	0.63	0.22
	105	R_u	1.81	2.17	3.04	2.44	5.32
		R_c	0.96	1.32	2.19	1.59	4.47
in. block -		НС	16.1	10.2	10.6	6.6	7.2
0100K		U-factor	0.58	0.48	0.35	0.43	0.21
		C-factor	1.14	0.82	0.50	0.68	0.25
	115	R_u	1.72	2.07	2.84	2.33	4.78
		R_c	0.87	1.22	1.99	1.48	3.93
_		НС	16.7	10.8	11.2	7.2	7.8
_		U-factor	0.61	0.51	0.38	0.45	0.24
		C-factor	1.27	0.90	0.57	0.74	0.30
	125	R_u	1.64	1.96	2.62	2.20	4.20
		R_c	0.79	1.11	1.77	1.35	3.35
		HC	17.3	11.4	11.8	7.8	8.4
_		U-factor	0.65	0.55	0.42	0.49	0.28
		C-factor	1.44	1.02	0.67	0.83	0.37
	135	R_u	1.54	1.83	2.35	2.05	3.55
		R_c	0.69	0.98	1.50	1.20	2.70
		HC	17.9	12.0	12.4	8.4	9.0

TABLE A3.1C Assembly U-Factors, C-Factors, R_{u} , R_{c} , and HC for Concrete Block Walls (continued)

Product Size,	Density,				te Block Grouting and C		
in.	lb/ft ³	Properties	Solid Crouted	Partly Grouted,	Partly Grouted,	Unreinforced,	Unreinforced,
		U-factor	Grouted 0.44	Cells Empty 0.38	Cells Insulated 0.25	Cells Empty 0.35	Cells Insulated
		C-factor	0.70	0.57	0.23	0.50	0.13
	85	R_u	2.29	2.61	4.05	2.84	7.87
	63	R_c	1.44	1.76	3.20	1.99	7.02
		HC	19.0	11.2	11.7	6.5	7.02
_		U-factor	0.47	0.41	0.27	0.37	0.14
		C-factor	0.47	0.62	0.35	0.55	0.14
	95	R_u	2.15	2.46	3.73	2.67	6.94
)3	R_{c}	1.30	1.61	2.88	1.82	6.09
		HC	1.30	11.9	12.4	7.3	8.1
_		U-factor	0.49	0.43	0.29	0.39	0.16
		C-factor	0.85	0.68	0.39	0.59	0.19
	105	R_u	2.03	2.33	3.45	2.54	6.17
	103	R_c	1.18	1.48	2.60	1.69	5.32
		HC	20.4	12.6	13.1	8.0	8.8
10 in. block -		U-factor	0.52	0.45	0.31	0.41	0.18
		C-factor	0.92	0.43	0.42	0.64	0.18
	115	R_u	1.94	2.22	3.21	2.42	5.52
	113		1.94	1.37	2.36	1.57	4.67
		$egin{aligned} R_c \ HC \end{aligned}$	21.1	13.4	13.9	8.7	9.5
-		U-factor	0.54	0.48	0.34	0.44	0.21
		C-factor	1.01	0.48	0.34	0.70	0.21
	125		1.84	2.10	2.95	2.28	4.81
	123	R_u	0.99	1.25	2.10		
		R_c HC	21.8	1.23	14.6	1.43 9.4	3.96 10.2
-		U-factor	0.58	0.51	0.38	0.47	0.25
	125	C-factor	1.14	0.90	0.56	0.79	0.32
	135	R_u	1.72	1.96 1.11	2.64 1.79	2.12 1.27	4.00 3.15
		R_c	0.87	14.8			
		HC U-factor	22.6 0.40	0.36	15.3 0.22	10.2 0.34	0.11
		C-factor	0.40	0.52	0.22	0.48	0.11
	85		2.53	2.77	4.59	2.93	9.43
	63	R_u	1.68	1.92	3.74	2.93	8.58
		R_c HC	23.1	13.3	14.0	7.5	8.5
_			0.42	0.38	0.24	0.36	
		U-factor C-factor	0.42	0.57	0.24	0.52	0.12 0.13
	95			2.60		2.76	8.33
	93	R_u	2.30		4.22		
		R_c HC	1.53 23.9	1.75 14.2	3.37 14.8	1.91 8.3	7.48 9.3
_		U-factor	0.44	0.41	0.26	0.38	0.14
		C-factor	0.44	0.41	0.26	0.57	0.14
	105		2.25	2.47	3.90	2.62	7.35
	103	R_u	1.40	1.62	3.90	1.77	6.50
		$egin{aligned} R_c \ HC \end{aligned}$	24.7	15.0	15.6	9.1	10.2
12 in. block -		U-factor	0.47	0.42	0.28	0.40	0.15
		C-factor	0.47	0.66	0.36	0.61	0.13
	115	R_u	2.15	2.36	3.63	2.49	6.54
	113	R_c	1.30	1.51	2.78	1.64	5.69
		HC	25.6	15.8	16.4	10.0	11.0
_		U-factor	0.49	0.45	0.30	0.42	0.18
		C-factor	0.49	0.43	0.40	0.66	0.18
	125	R_u	2.04	2.23	3.34	2.36	5.68
	123		1.19	1.38	2.49	1.51	4.83
		$egin{aligned} R_c \ HC \end{aligned}$	26.4	16.6	17.3	10.8	11.8
-		U-factor	0.52	0.48	0.34	0.46	0.21
		C-factor	0.32	0.48	0.34	0.74	0.21
	135		1.91	2.08	2.98	2.19	4.67
	133	R_u					
		R_c	1.06	1.23	2.13	1.34	3.82
		НС	27.2	17.5	18.1	11.6	12.6

- of 0.44 Btu·in./h·ft²·°F. Other *mass walls* with integral insulation shall meet the criteria when their *U-factors* are equal to or less than those for the appropriate thickness and density in the "Partly Grouted Cells Insulated" column of Table A3.1C.
- **A3.1.3.2 Determination of Mass Wall U-Factors.** If not taken from Table A3.1A, *mass wall U-factors* shall be determined from Tables A3.1B, A3.1C, or A3.1D using the following procedure:
- If the mass wall is uninsulated or only the cells are insulated:
 - a. For concrete *walls*, determine the *U-factor* from Table A3.1B based on the concrete density and *wall* thickness.
 - b. For concrete block walls, determine the U-factor from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated.
- 2. If the *mass wall* has additional insulation:
 - a. For concrete *walls*, determine the R_u from Table A3.1B based on the concrete density and *wall* thickness. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the *rated R-value of insulation* installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the *U-factor* by adding the R_u and the effective R-value together and taking the inverse of the total.
 - b. For concrete block *walls*, determine the R_u from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the *rated R-value of insulation* installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the *U-factor* by adding the R_u and the effective R-value together and taking the inverse of the total.

A3.2 Metal Building Walls

A3.2.1 General. For the purpose of Section A1.2, the base assembly is a *wall* where the insulation is compressed between metal wall panels and the metal structure. Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing.

A3.2.2 Rated R-Value of Insulation for Metal Building Walls

- **A3.2.2.1** The first *rated R-Value of insulation* is for insulation compressed between metal wall panels and the steel structure.
- **A3.2.2.2** For double-layer installations, the second *rated R-value of insulation* is for insulation installed from the inside, covering the girts.

- **A3.2.2.3** For continuous insulation (e.g., insulation boards) it is assumed that the insulation boards are installed on the inside of the girts and uninterrupted by the framing members.
- **A3.2.2.4** Insulation exposed to the *conditioned space* or *semiheated space* shall have a facing, and all insulation seams shall be continuously sealed to provide a continuous air barrier.
- **A3.2.3** *U-Factors* for *Metal Building Walls*. U-factors for metal building walls shall be taken from Table A3.2. It is not acceptable to use these *U-factors* if additional insulation is not continuous.

A3.3 Steel-Framed Walls

- **A3.3.1 General.** For the purpose of Section A1.2, the base assembly is a *wall* where the insulation is installed within the cavity of the steel stud framing but where there is not a metal exterior surface spanning member. The steel stud framing is a minimum uncoated thickness of 0.043 in. for 18 gauge or 0.054 in. for 16 gauge. The *U-factors* include R-0.17 for exterior air film, R-0.08 for stucco, R-0.56 for 0.625 in. gypsum board on the exterior, R-0.56 for 0.625 in. gypsum board on the interior, and R-0.68 for interior vertical surfaces air film. The performance of the insulation/framing layer is calculated using the values in Table A9.2B. Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing. *U-factors* are provided for the following configurations:
- a. *Standard framing*: steel stud framing at 16 in. on center with cavities filled with 16 in. wide insulation for both 3.5 in. deep and 6.0 in. deep wall cavities.
- b. *Advanced framing*: steel stud framing at 24 in. on center with cavities filled with 24 in. wide insulation for both 3.5 in. deep and 6.0 in. deep wall cavities.

A3.3.2 Rated R-Value of Insulation for Steel-Framed Walls

- **A3.3.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between steel studs. It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing.
- **A3.3.2.2** If there are two values, the second *rated R-value* of insulation is for continuous insulation uninterrupted by framing, etc., to be installed in addition to the first insulation.
- **A3.3.2.3** Opaque mullions in spandrel glass shall be covered with insulation complying with the steel-framed wall requirements.

A3.3.3 U-Factors for Steel-Framed Walls

- **A3.3.3.1** U-factors for steel-framed walls shall be taken from Table A3.3.
- **A3.3.3.2** For *steel-framed walls* with framing at less than 24 in. on center, use the standard framing values as described in Section A3.3.1(a).
- **A3.3.3.3** For *steel-framed walls* with framing from 24 to 32 in. on center, use the advanced framing values as described in Section A3.3.1(b).

<u>s</u>
<u>a</u>
>
rad
Ğ
Š
음
m
p
sa
<u>a</u>
≷
388
Ĕ
de
īra
9
Š
Ab
٥
Ď
혖
ĕ
ers.
>
$\boldsymbol{\sigma}$
g La
ning La
aming La
/Framing La
on/Framing La
lation/Framing La
sulation/Framing La
Insulation/Framing La
for Insulation/Framing
es for Insulation/Framing La
ues for Insulation/Framing
-Values for Insulation/Framing
R-Values for Insulation/Framing
ve R-Values for Insulation/Framing
ective R-Values for Insulation/Framing
ctive R-Values for Insulation/Framing
Effective R-Values for Insulation/Framing
D Effective R-Values for Insulation/Framing
.1D Effective R-Values for Insulation/Framing
E A3.1D Effective R-Values for Insulation/Framing
E A3.1D Effective R-Values for Insulation/Framing
LE A3.1D Effective R-Values for Insulation/Framing

,													Safed L	Rated R-Value of Insulation	of Inc	ոլեքը	ء										
Deptn, in.	Framing Type	0	1	2	3	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
						1	Effectiv	Effective R-value if c		ontinuc	ontinuous insulation	lation 1	uninterrupted		by fran	ing (in	by framing (includes	<i>mnsd</i> \(\delta\)	ı board,	0							
	None	0.5	1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20.5	21.5	22.5	23.5	24.5 2	25.5
						F	Hectiva	Effective R-value if in		ısulation		is installed in	n cavit	cavity between framing	en fran	iing (i	(includes		gypsum board)	0							
3 0	Wood	1.3	1.3	1.9	2.4	2.7	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
C:0	Metal	6.0	6.0	1.1	1.1	1.2	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
37.0	Wood	1.4	1.4	2.1	2.7	3.1	3.5	3.8	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
0.75	Metal	1.0	1.0	1.3	1.4	1.5	1.5	1.6	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
-	Wood	1.3	1.5	2.2	2.9	3.4	3.9	4.3	4.6	4.9	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
1.0	Metal	1.0	1.1	1.4	1.6	1.7	1.8	1.8	1.9	1.9	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
4	Wood	1.3	1.5	2.4	3.1	3.8	4.4	4.9	5.4	5.8	6.2	6.5	8.9	7.1	na	na	na	na	na	na	na	na	na	na	na	na	na
C.1	Metal	1.1	1.2	1.6	1.9	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.6	2.7	na	na	na	na	na	na	na	na	na	na	na	na	na
c	Wood	1.4	1.5	2.5	3.3	4.0	4.7	5.3	5.9	6.4	6.9	7.3	7.7	8.1	8.4	8.7	0.6	9.3	na	na	na	na	na	na	na	na	na
7.0	Metal	1.1	1.2	1.7	2.1	2.3	2.5	2.7	2.8	2.9	3.0	3.1	3.2	3.2	3.3	3.3	3.4	3.4	na	na	na	na	na	na	na	na	na
ų C	Wood	1.4	1.5	2.5	3.4	4.2	4.9	5.6	6.3	8.9	7.4	7.9	8.4	8.8	9.2	9.6	10.0	10.3	10.6	10.9	11.2	11.5	na	na	na	na	na
2.3	Metal	1.2	1.3	1.8	2.3	2.6	2.8	3.0	3.2	3.3	3.5	3.6	3.6	3.7	3.8	3.9	3.9	4.0	4.0	4.1	4.1	4.1	na	na	na	na	na
,	Wood	1.4	1.5	2.5	3.5	4.3	5.1	5.8	6.5	7.2	7.8	8.3	8.9	9.4	6.6	10.3	10.7	11.1	11.5	11.9	12.2	12.5	12.9	na	na	na	na
2.0	Metal	1.2	1.3	1.9	2.4	2.8	3.1	3.3	3.5	3.7	3.8	4.0	4.1	4.2	4.3	4.4	4.4	4.5	4.6	4.6	4.7	4.7	4.8	na	na	na	na
4	Wood	1.4	1.5	2.6	3.5	4.4	5.2	0.9	6.7	7.4	8.1	8.7	9.3	8.6	10.4	10.9	11.3	11.8	12.2	12.6	13.0	13.4	13.8	14.1	14.5	14.8 1	15.1
J.: J	Metal	1.2	1.3	2.0	2.5	2.9	3.2	3.5	3.8	4.0	4.2	4.3	4.5	4.6	4.7	4.8	4.9	5.0	5.1	5.1	5.2	5.2	5.3	5.4	5.4	5.4	5.5
<u> </u>	Wood	4.1	1.6	2.6	3.6	4.5	5.3	6.1	6.9	7.6	8.3	9.0	9.6	10.2	10.8	11.3	11.9	12.4	12.8	13.3	13.7	14.2	14.6	14.9	15.3	15.7	16.0
0.4	Metal	1.2	1.3	2.0	2.6	3.0	3.4	3.7	4.0	4.2	4.5	4.6	4.8	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.8	5.9	5.9	0.9	0.9
3 7	Wood	1.4	1.6	2.6	3.6	4.5	5.4	6.2	7.1	7.8	8.5	9.2	6.6	10.5	11.2	11.7	12.3	12.8	13.3	13.8	14.3	14.8	15.2	15.7	16.1	16.5	16.9
J	Metal	1.2	1.3	2.1	2.6	3.1	3.5	3.9	4.2	4.5	4.7	4.9	5.1	5.3	5.4	5.6	5.7	5.8	5.9	0.9	6.1	6.2	6.3	6.4	6.4	6.5	9.9
0 4	Wood	1.4	1.6	2.6	3.6	4.6	5.5	6.3	7.2	8.0	8.7	9.4	10.1	10.8	11.5	12.1	12.7	13.2	13.8	14.3	14.8	15.3	15.8	16.3	16.7	17.2	17.6
0.0	Metal	1.2	1.4	2.1	2.7	3.2	3.7	4.1	4.4	4.7	5.0	5.2	5.4	5.6	5.8	5.9	6.1	6.2	6.3	6.5	9.9	6.7	8.9	8.9	6.9	7.0	7.1
¥	Wood	1.4	1.6	2.6	3.6	4.6	5.5	6.4	7.3	8.1	8.9	9.6	10.3	11.0	11.7	12.4	13.0	13.6	14.2	14.7	15.3	15.8	16.3	16.8	17.3	17.8 1	18.2
	Metal	1.3	1.4	2.1	2.8	3.3	3.8	4.2	4.6	4.9	5.2	5.4	5.7	5.9	6.1	6.3	6.4	9.9	6.7	8.9	7.0	7.1	7.2	7.3	7.4	7.5	9.7

Copyrighted material provided through funding from the US Department of Energy, licensed to JULIO GORMAZ on 26-Oct-2010. Further reproduction or networking is prohibited.

TABLE A3.2 Assembly U-Factors for Metal Building Walls

Insulation System	Rated R-Value of Insulation	Total Rated R-Value of Insulation	Overall U-Factor for Entire Base Wall	Overall U	(Assembly of B Uninterrupte R-Value of C	d by Framin	<i>S</i> /	Insulation
	1110411411011	2220 44 40 20 22	Assembly	R-5.6	R-11.2	R-16.8	R-22.4	R-28.0	R-33.6
Single Layer	of Mineral F	iber							
	None	0	1.180	0.161	0.086	0.059	0.045	0.036	0.030
	R-6	6	0.184	0.091	0.060	0.045	0.036	0.030	0.026
	R-10	10	0.134	0.077	0.054	0.051	0.033	0.028	0.024
	R-11	11	0.123	0.073	0.052	0.040	0.033	0.028	0.024
	R-13	13	0.113	0.069	0.050	0.039	0.032	0.027	0.024
Double Laye	r of Mineral	Fiber							
(Second layer	r inside of girts	s)							
(Multiple laye	ers are listed in	n order from in	side to outside)					
	R-6 + R-13	19	0.070	N/A	N/A	N/A	N/A	N/A	N/A
	R-10 + R-13	23	0.061	N/A	N/A	N/A	N/A	N/A	N/A
	R-13 + R-13	26	0.057	N/A	N/A	N/A	N/A	N/A	N/A
	R-19 + R-13	32	0.048	N/A	N/A	N/A	N/A	N/A	N/A

A3.3.3.4 For *steel-framed walls* with framing greater than 32 in. on center, use the *metal building wall* values in Table A3.2.

A3.4 Wood-Framed Walls

A3.4.1 General. For the purpose of Section A1.2, the base assembly is a *wall* where the insulation is installed between 2 in. nominal wood framing. Cavity insulation is full depth, but values are taken from Table A9.4C for R-19 insulation, which is compressed when installed in a 5.5 in. cavity. Headers are double 2 in. nominal wood framing. The *U-factors* include R-0.17 for exterior air film, R-0.08 for stucco, R-0.56 for 0.625 in. gypsum board on the exterior, R-0.56 for 0.625 in. gypsum board on the interior, and R-0.68 for interior air film, vertical surfaces. Additional assemblies include *continuous insulation*, uncompressed and uninterrupted by framing. *U-factors* are provided for the following configurations:

- a. Standard framing: wood framing at 16 in. on center with cavities filled with 14.5 in. wide insulation for both 3.5 in. deep and 5.5 in. deep wall cavities. Double headers leave no cavity. Weighting factors are 75% insulated cavity, 21% studs, plates, and sills, and 4% headers.
- b. Advanced framing: wood framing at 24 in. on center with cavities filled with 22.5 in. wide insulation for both 3.5 in. deep and 5.5 in. deep wall cavities. Double headers leave uninsulated cavities. Weighting factors are 78% insulated cavity, 18% studs, plates, and sills, and 4% headers.
- c. Advanced framing with insulated headers: wood framing at 24 in. on center with cavities filled with 22.5 in. wide insulation for both 3.5 in. deep and 5.5 in. deep wall cavi-

ties. Double header cavities are insulated. Weighting factors are 78% insulated cavity, 18% studs, plates, and sills, and 4% headers.

A3.4.2 Rated R-value of Insulation for Wood-Framed and Other Walls

A3.4.2.1 The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between wood studs. It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing.

A3.4.2.2 If there are two values, the second *rated R-value* of insulation is for continuous insulation uninterrupted by framing, etc., to be installed in addition to the first insulation.

A3.4.3 U-Factors for Wood-Framed Walls

- **A3.4.3.1** U-factors for wood-framed walls shall be taken from Table A3.4.
- **A3.4.3.2** For *wood-framed walls* with framing at less than 24 in. on center, use the standard framing values as described in Section A3.4.1(a).
- **A3.4.3.3** For *wood-framed walls* with framing from 24 to 32 in. on center, use the advanced framing values as described in Section A3.4.1(b) if the headers are uninsulated or the advanced framing with insulated header values as described in Section A3.4.1(c) if the headers are insulated.
- **A3.4.3.4** For *wood-framed walls* with framing greater than 32 in. on center, U-factors shall be determined in accordance with Section A9.

TABLE A3.3 Assembly U-Factors for Steel-Frame Walls

Framing	Covity Insulation	Overall					Overal	l U-Fact	or for A	ssembly	y of Base	e Wall Pl	us Conti	uI snonu	sulation	Overall U-Factor for Assembly of Base Wall Plus Continuous Insulation (Uninterrupted by Framing),	upted by	Framin	3),			
Spacing Width	_	U-Factor for Entire									Rated F	?-Value o	Rated R-Value of Continuous Insulation	suI snon	ulation							
(Actual Depth)		Base Wall ——————————————————————————————————	R-1.00	R-2.00	R-3.00	R-4.00		R-6.00	R-7.00	R-8.00	R-9.00	R-10.00	R-11.00	R-12.00	R-13.00	.00 R-6.00 R-7.00 R-8.00 R-9.00 R-10.00 R-11.00 R-12.00 R-13.00 R-14.00 R-15.00 R-20.00 R-25.00 R-30.00 R-35.00 R-40.00	R-15.00	R-20.00	R-25.00	R-30.00	R-35.00	R-40.00
Steel Fram	Steel Framing at 16 in. on center	ı																				
	None (0.0)	0.352	0.260	0.207	0.171	0.260 0.207 0.171 0.146 0.128	0.128	0.113	0.102	0.092	0.084	0.078	0.072	0.067	0.063	0.059	0.056	0.044	0.036	0.030	0.026	0.023
3.5 in.	R-11 (5.5)	0.132	0.117	0.105	0.095	0.087	0.080	0.074	0.069	0.064	090.0	0.057	0.054	0.051	0.049	0.046	0.044	0.036	0.031	0.027	0.024	0.021
depth	R-13 (6.0)	0.124	0.1111	0.100	0.100 0.091	0.083	0.077	0.071	990.0	0.062	0.059	0.055	0.052	0.050	0.048	0.045	0.043	0.036	0.030	0.026	0.023	0.021
	R-15 (6.4)	0.118	0.106	960.0	0.087	0.080	0.074	0.069	0.065	0.061	0.057	0.054	0.051	0.049	0.047	0.045	0.043	0.035	0.030	0.026	0.023	0.021
6.0 in.	R-19 (7.1)	0.109	0.099 0.090		0.082	0.082 0.076	0.071	990.0	0.062	0.058	0.055	0.052	0.050	0.047	0.045	0.043	0.041	0.034	0.029	0.026	0.023	0.020
depth	R-21 (7.4)	0.106	0.096 0.087		0.080 0.074	0.074	0.069	0.065	0.061	0.057	0.054	0.051	0.049	0.047	0.045	0.043	0.041	0.034	0.029	0.025	0.022	0.020
Steel Fram	Steel Framing at 24 in. on center	ļ.																				
	None (0.0)	0.338	0.253 0.202	0.202	0.168	0.144	0.126	0.112	0.100	0.091	0.084	0.077	0.072	0.067	0.063	0.059	0.056	0.044	0.036	0.030	0.026	0.023
3.5 in.	R-11 (6.6)	0.116	0.104	0.094	0.086	0.079	0.073	0.068	0.064	090.0	0.057	0.054	0.051	0.048	0.046	0.044	0.042	0.035	0.030	0.026	0.023	0.021
depth	R-13 (7.2)	0.108	0.098	0.089	0.082	0.075	0.070	990.0	0.062	0.058	0.055	0.052	0.049	0.047	0.045	0.043	0.041	0.034	0.029	0.025	0.023	0.020
	R-15 (7.8)	0.102	0.092	0.084	0.078	0.072	0.067	0.063	0.059	0.056	0.053	0.050	0.048	0.046	0.044	0.042	0.040	0.034	0.029	0.025	0.022	0.020
6.0 in.	R-19 (8.6)	0.094	980.0	0.079	0.086 0.079 0.073 0.068	0.068	0.064	090.0	0.057	0.054	0.051	0.048	0.046	0.044	0.042	0.041	0.039	0.033	0.028	0.025	0.022	0.020
depth	R-21 (9.0)	0.090	0.083	0.077	0.071	0.083 0.077 0.071 0.066	0.062	0.059	0.055	0.052	0.050	0.048	0.045	0.043	0.042	0.040	0.038	0.032	0.028	0.024	0.022	0.020

Copyrighted material provided through funding from the US Department of Energy, licensed to JULIO GORMAZ on 26-Oct-2010. Further reproduction or networking is prohibited.

TABLE A3.4 Assembly U-Factors for Wood-Frame Walls

Framing Type and	Cavity Insulation	Overall U-Factor					Overa	II U-Fac	tor for 1	Assembl	y of Base	Wall Pl	us Contil	unons Ins	rall U-Factor for Assembly of Base Wall Plus Continuous Insulation (Uninterrupted by Framing)	Uninterr	upted by	Framing	G			
Spacing Width	K-Value: Kated (Effective	for Entire									Rated R	Rated R-Value of Continuous Insulation	f Continu	nons Insu	lation							
(Actual Depth)	Installed [see Table A9.4C])	Assembly R-1.00 R-2.00 R-3.00 R-4.00	R-1.00	R-2.00	R-3.00	R-4.00	R-5.00	R-6.00	R-7.00	R-8.00	R-9.00 I	8-10.00	R-11.00	R-12.00	R-9.00 R-10.00 R-11.00 R-12.00 R-13.00 R-14.00 R-15.00 R-20.00	R-14.00	8-15.00	R-20.00	R-25.00	R-25.00 R-30.00 R-35.00 R-40.00	R-35.00	R-40.00
Wood Studs	Wood Studs at 16 in. on center	£.																				
3.5 in.	None (0.0)	0.292	0.223	0.223 0.181	0.152	0.132	0.116	0.104	0.094	980.0	0.079	0.073	890.0	0.064	090.0	0.056	0.053	0.042	0.035	0.030	0.026	0.023
depth	R-11 (11.0)	960.0	0.087 0.079		0.073	0.068	0.063	0.059	0.056	0.053	0.050	0.048	0.046	0.044	0.042	0.040	0.038	0.032	0.028	0.024	0.022	0.020
	R-13 (13.0)	0.089	0.080	0.074	0.068	0.063	0.059	0.056	0.053	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.037	0.031	0.027	0.024	0.021	0.019
	R-15 (15.0)	0.083	0.075	690.0	0.064	090.0	0.056	0.053	0.050	0.047	0.045	0.043	0.041	0.039	0.038	0.036	0.035	0.030	0.026	0.023	0.020	0.019
5.5 in.	R-19 (18.0)	0.067	0.062	0.058	0.054	0.051	0.048	0.046	0.044	0.042	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.027	0.024	0.021	0.019	0.018
depth	R-21 (21.0)	0.063	0.058	0.054		0.048	0.045		0.041	0.039	0.038	0.036	0.035	0.034	0.032	0.031	0.030	0.026	0.023	0.021	0.019	0.017
	,																					
+ R-10	R-19 (18.0)	0.063	0.059	0.055	0.052	0.049	0.047	0.045	0.043	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.031	0.027	0.024	0.021	0.019	0.017
headers	R-21 (21.0)	0.059	0.055	0.051	0.049	0.046	0.044	0.042	0.040	0.038	0.037	0.035	0.034	0.033	0.032	0.031	0.030	0.026	0.023	0.020	0.018	0.017
Wood Studs	Wood Studs at 24 in. on center	L																				
3.5 in.	None (0.0)	0.298	0.227 0.183		0.154	0.133	0.117	0.105	0.095	980.0	0.079	0.074	890.0	0.064	090.0	0.057	0.054	0.042	0.035	0.030	0.026	0.023
depth	R-11 (11.0)	0.094	0.085	0.078	0.072	0.067	0.062	0.059	0.055	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.032	0.027	0.024	0.022	0.019
	R-13 (13.0)	0.086	0.078	0.072	0.067	0.062	0.058	0.055	0.052	0.049	0.047	0.045	0.043	0.041	0.039	0.038	0.036	0.031	0.026	0.023	0.021	0.019
	R-15 (15.0)	0.080	0.073	0.067	0.062	0.058	0.055	0.052	0.049	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.029	0.026	0.023	0.020	0.018
	(0.01) 01 4					9	2				000	000	,,	900	2	,	6	7	2		9	0
5.5 in.	K-19 (18.0)	0.00	0.000	0.060 0.056	0.053	0.050	0.04	0.045	0.043	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.032	0.027	0.074	0.021	0.019	0.018
depth	R-21 (21.0)	0900	0.056 0.052		0.049	0.046	0.044	0.042	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.026	0.023	0.020	0.018	0.017
£	2007		0				9				0	1			6			0	9		9	t C
+ K-10	K-19 (18.0)	0.007	0.028	0.034	0.051	0.048	0.040	140.0	0.042	0.040	0.039	0.037	0.030	0.034	0.033	0.032	0.031	0.027	0.024	0.021	0.019	0.01/
headers	R-21 (21.0)	0.057	0.053	0.050	0.047	0.045	0.043	0.041	0.039	0.037	0.036	0.035	0.033	0.032	0.031	0.030	0.029	0.025	0.023	0.020	0.018	0.017

A4. BELOW-GRADE WALLS

A4.1 General. For the purpose of Section A1.2, The base assembly is 8 in. medium-weight concrete block with a density of 115 lb/ft³ and solid grouted cores. *Continuous insulation* is installed on the interior or exterior. In contrast to the *U-factor* for *above-grade walls*, the *C-factor* for *below-grade walls* does not include R-values for exterior or interior air films or for soil. For insulated walls, the *C-factor* does include R-0.45 for 0.5 in. gypsum board.

A4.2 C-Factors for Below-Grade Walls

- **A4.2.1** C-factors for below-grade walls shall be taken from Table A4.2 or determined by the procedure described in this subsection.
- **A4.2.2** It is acceptable to use the *C-factors* in Table A4.2 for all *below-grade walls*.
- **A4.2.3** If not taken from Table A4.2, *below-grade wall C-factors* shall be determined from Tables A3.1B, A3.1C, or A3.1D using the following procedure:
- a. If the *below-grade wall* is uninsulated or only the cells are insulated:
 - For concrete walls, determine the C-factor from Table A3.1B based on the concrete density and wall thickness.
 - For concrete block walls, determine the C-factor from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated.
- b. If the *mass wall* has additional insulation:
 - For concrete walls, determine the R_c from Table A3.1B based on the concrete density and wall thickness. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the rated R-value of insulation installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the C-factor by adding the R_c and the effective R-value together and taking the inverse of the total.
 - 2. For concrete block walls, determine the R_c from Table A3.1C based on the block size, concrete density, degree of grouting in the cells, and whether the cells are insulated. Next, determine the effective R-value for the insulation/framing layer from Table A3.1D based on the rated R-value of insulation installed, the thickness of the insulation, and whether it is installed between wood or metal framing or with no framing. Then, determine the C-factor by adding the R_c and the effective R-value together and taking the inverse of the total.

A5. FLOORS

A5.1 General. The buffering effect of crawlspaces or parking garages shall not be included in *U-factor* calculations. See Section A6 for *slab-on-grade floors*.

A5.2 Mass Floors

A5.2.1 General. For the purpose of Section A1.2, the base assembly is *continuous insulation* over or under a solid concrete *floor*. The *U-factors* include R-0.92 for interior air film-heat flow down, R-1.23 for carpet and rubber pad, R-0.50 for 8 in. concrete, and R-0.46 for semi-exterior air film. Added insulation is continuous and uninterrupted by framing. Framing factor is zero.

A5.2.2 Rated R-Value of Insulation for Mass Floors

- **A5.2.2.1** The *rated R-value of insulation* is for *continuous insulation* uninterrupted by framing.
- **A5.2.2.2** Where framing, including metal and wood joists, is used, compliance shall be based on the maximum assembly *U-factor* rather than the minimum *rated R-value of insulation*.
- **A5.2.2.3** For waffle-slab *floors*, the *floor* shall be insulated either on the interior above the slab or on all exposed surfaces of the waffle.
- **A5.2.2.4** For *floors* with beams that extend below the floor slab, the *floor* shall be insulated either on the interior above the slab or on the exposed floor and all exposed surfaces of the beams that extend 24 in. and less below the exposed floor.

A5.2.3 U-Factors for Mass Floors

- **A5.2.3.1** The *U-factors* for mass walls shall be taken from Table A5.2.
- **A5.2.3.2** It is not acceptable to use the *U-factors* in Table A5.2 if the insulation is not continuous.

A5.3 Steel-Joist Floors

A5.3.1 General. For the purpose of Section A1.2, the base assembly is a *floor* where the insulation is either placed between the steel joists or is sprayed on the underside of the *floor* and the joists. In both cases, the steel provides a thermal bypass to the insulation. The *U-factors* include R-0.92 for interior air film—heat flow down, R-1.23 for carpet and pad, R-0.25 for 4 in. concrete, R-0 for metal deck, and R-0.46 for semi-exterior air film. The performance of the insulation/framing layer is calculated using the values in Table A9.2A.

A5.3.2 Rated R-Value of Insulation for Steel-Joist Floors

- **A5.3.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between steel joists or for spray-on insulation.
- **A5.3.2.2** It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing. All *continuous insulation* shall be installed either on the interior above the floor structure or below a framing cavity completely filled with insulation.

A5.3.3 U-Factors for Steel-Joist Floors

- **A5.3.3.1** The *U-factors* for steel-joist floors shall be taken from Table A5.3.
- **A5.3.3.2** It is acceptable to use these *U-factors* for any *steel-joist floor*.

A5.4 Wood-Framed and Other Floors

A5.4.1 General. For the purpose of Section A1.2, the base assembly is a *floor* attached directly to the top of the wood joist

TABLE A4.2 Assembly C-Factors for Below-Grade Walls

Framing Type and Depth	Rated R-Value of Insulation Alone	Specified C-Factors (Wall Only, without Soil and Air Films)
No Framing	R-0	C-1.140
Exterior Insulation, Continuous and Unin	terrupted by Framing	
No Framing	R-5.0	C-0.170
No Framing	R-7.5	C-0.119
No Framing	R-10.0	C-0.092
No Framing	R-12.5	C-0.075
No Framing	R-15.0	C-0.063
No Framing	R-17.5	C-0.054
No Framing	R-20.0	C-0.048
No Framing	R-25.0	C-0.039
No Framing	R-30.0	C-0.032
No Framing	R-35.0	C-0.028
No Framing	R-40.0	C-0.025
No Framing	R-45.0	C-0.022
No Framing	R-50.0	C-0.020
Continuous Metal Framing at 24 in. on Ce	enter Horizontally	
3.5 in.	R-11.0	C-0.182
3.5 in.	R-13.0	C-0.174
3.5 in.	R-15.0	C-0.168
5.5 in.	R-19.0	C-0.125
5.5 in.	R-21.0	C-0.120
in. Metal Clips at 24 in. on Center Horiz	ontally and 16 in. Vertically	
1.0 in.	R-3.8	C-0.233
1.0 in.	R-5.0	C-0.201
1.0 in.	R-5.6	C-0.189
1.5 in.	R-5.7	C-0.173
1.5 in.	R-7.5	C-0.147
1.5 in.	R-8.4	C-0.138
2.0 in.	R-7.6	C-0.138
2.0 in.	R-10.0	C-0.116
2.0 in.	R-11.2	C-0.108
2.5 in.	R-9.5	C-0.114
2.5 in.	R-12.5	C-0.096
2.5 in.	R-14.0	C-0.089
3.0 in.	R-11.4	C-0.098
3.0 in.	R-15.0	C-0.082
3.0 in.	R-16.8	C-0.076
3.5 in.	R-13.3	C-0.085
3.5 in.	R-17.5	C-0.071
3.5 in.	R-19.6	C-0.066
4.0 in.	R-15.2	C-0.076
4.0 in.	R-20.0	C-0.063
4.0 in.	R-22.4	C-0.058

TABLE A5.2 Assembly U-Factors for Mass Floors

Framing		;					ő	erall U-F	³actor fo	r Assem	bly of B	ase Floor	Plus Cor	ıtinuous	Insulatio	Overall U-Factor for Assembly of Base Floor Plus Continuous Insulation (Uninterrupted by Framing)	rrupted l	ov Framin	ng)			
Type and Spacing		Overall U-Factor									•					,		•	ò			
Width	Value: Rated (Effective	for Entire Base Floor									Rate	d R-Value	Rated R-Value of Continuous Insulation	inuous Ir	ısulation							
(Actual Depth)	Installed)	Assembly	R-1.00	R-2.00	R-3.00	R-1.00 R-2.00 R-3.00 R-4.00 R-5.00 R	R-5.00) R-6.00	-6.00 R-7.00 R-8.00	R-8.00		R-10.00	R-11.00	R-12.00) R-13.0(R-9.00 R-10.00 R-11.00 R-12.00 R-13.00 R-14.00 R-15.00 R-20.00 R-25.00 R-30.00	R-15.00	R-20.00	R-25.00	R-30.00	R-35.00	R-40.00
Concrete	Concrete Floor with Rigid Foam	d Foam																				
	None (0.0)	0.322	0.243	0.196	0.164	0.243 0.196 0.164 0.141	0.123	0.110	0.099	0.090	0.083	0.076	0.071	0.066	0.062	0.058	0.055	0.043	0.036	0.030	0.026	0.023
Concrete	Concrete Floor with Pinned Boards	ned Boards																				
	R-4.2 (4.2)	0.137	0.121	0.108	0.097	0.089	0.081	0.075	0.070	0.065	0.061	0.058	0.055	0.052	0.049	0.047	0.045	0.037	0.031	0.027	0.024	0.021
	R-6.3 (6.3)	0.107	0.096	0.088	0.081	0.075	0.070	0.065	0.061	0.058	0.054	0.052	0.049	0.047	0.045	0.043	0.041	0.034	0.029	0.025	0.023	0.020
	R-8.3 (8.3)	0.087	0.080	0.074	0.069	0.065	0.061	0.057	0.054	0.051	0.049	0.047	0.045	0.043	0.041	0.039	0.038	0.032	0.027	0.024	0.022	0.019
	R-10.4 (10.4)	0.074	0.069	0.064	0.060	0.057	0.054	0.051	0.049	0.046	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.030	0.026	0.023	0.021	0.019
	R-12.5 (12.5)	0.064	0.060	0.057	0.054	0.051	0.048	0.046	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.028	0.025	0.022	0.020	0.018
	R-14.6 (14.6)	0.056	0.053	0.051	0.048	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.034	0.033	0.032	0.031	0.027	0.023	0.021	0.019	0.017
	R-16.7 (16.7)	0.051	0.048	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.034	0.032	0.031	0.030	0.030	0.029	0.025	0.022	0.020	0.018	0.017
Concrete	Concrete Floor with Spray-On Insulation	ay-On Insul	ation																			
1 in.	R-4 (4.0)	0.141	0.123	0.110	0.123 0.110 0.099		0.090 0.083	0.076	0.071	0.066	0.062	0.058	0.055	0.052	0.050	0.047	0.045	0.037	0.031	0.027	0.024	0.021
2 in.	R-8 (8.0)	0.090	0.083	0.076	0.071	0.066	0.062	0.058	0.055	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.032	0.028	0.024	0.022	0.020
3 in.	R-12 (12.0)	990.0	0.062	0.058	0.055	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.037	0.036	0.034	0.033	0.028	0.025	0.022	0.020	0.018
4 in.	R-16 (16.0)	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.026	0.023	0.020	0.018	0.017
5 in.	R-20 (20.0)	0.043	0.041	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.023	0.021	0.019	0.017	0.016
6 in.	R-24 (24.0)	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.026	0.025	0.024	0.024	0.021	0.019	0.018	0.016	0.015

Copyrighted material provided through funding from the US Department of Energy, licensed to JULIO GORMAZ on 26-Oct-2010. Further reproduction or networking is prohibited.

TABLE A5.3 Assembly U-Factors for Steel-Joist Floors

								•	Assembly 5 Lactors for													
Framing Type and	Cavity Insulation R-Value: Rated	Overall U-Factor					Overal	II U-Fac	tor for 2	Assembl	y of Bas	e Floor I	lus Cont	inuous I	nsulatio	erall U-Factor for Assembly of Base Floor Plus Continuous Insulation (Uninterrupted by Framing)	rrupted l	oy Frami	(Bu			
Width	(Effective	for Entire Base Floor -									Rated	Rated R-Value of Continuous Insulation	of Contir	anons Ins	ulation							
(Actual Depth)	Installed [See Table A9.2A])		R-1.00	R-2.00	R-3.00	R-1.00 R-2.00 R-3.00 R-4.00 R-5	00:	R-6.00	R-6.00 R-7.00	R-8.00	R-9.00	R-9.00 R-10.00	R-11.00	R-12.00	R-13.00	R-13.00 R-14.00 R-15.00 R-20.00	R-15.00	R-20.00	R-25.00	R-25.00 R-30.00 R-35.00 R-40.00	R-35.00	R-40.00
Steel Joist I	Steel Joist Floor with Rigid Foam	am																				
	None (0.0)	0.350	0.259	0.206	0.171	0.146	0.127	0.113	0.101	0.092	0.084	0.078	0.072	0.067	0.063	0.059	0.056	0.044	0.036	0.030	0.026	0.023
Steel Joist I	Steel Joist Floor with Spray-on Insulation	ı İnsulation																				
1 in.	R-4 (3.88)	0.148	0.129	0.114	0.103	0.093	0.085	0.078	0.073	890.0	0.064	090.0	0.056	0.053	0.051	0.048	0.046	0.037	0.032	0.027	0.024	0.021
2 in.	R-8 (7.52)	960.0	0.088	0.081	0.075	0.070	0.065	0.061	0.058	0.054	0.052	0.049	0.047	0.045	0.043	0.041	0.039	0.033	0.028	0.025	0.022	0.020
3 in.	R-12 (10.80)	0.073	0.068	0.064	090.0	0.057	0.054	0.051	0.048	0.046	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.030	0.026	0.023	0.021	0.019
4 in.	R-16 (13.92)	090.0	0.056	0.053	0.051	0.048	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.034	0.032	0.031	0.027	0.024	0.021	0.019	0.018
5 in.	R-20 (17.00)	0.050	0.048	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.033	0.032	0.031	0.030	0.030	0.029	0.025	0.022	0.020	0.018	0.017
6 in.	R-24 (19.68)	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.027	0.027	0.024	0.021	0.019	0.017	0.016
Steel Joist I	Steel Joist Floor with Batt Insulation	ılation																				
	None (0.0)	0.350	0.259	0.206	0.171	0.146	0.127	0.113	0.101	0.092	0.084	0.078	0.072	0.067	0.063	0.059	0.056	0.044	0.036	0.030	0.026	0.023
	R-11 (10.01)	0.078	0.072	0.067	0.063	0.059	0.056	0.053	0.050	0.048	0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.030	0.026	0.023	0.021	0.019
	R-13 (11.70)	0.069	0.064	090.0	0.057	0.054	0.051	0.049	0.046	0.044	0.042	0.041	0.039	0.038	0.036	0.035	0.034	0.029	0.025	0.022	0.020	0.018
	R-15 (13.20)	0.062	0.059	0.055	0.052	0.050	0.047	0.045	0.043	0.042	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.028	0.024	0.022	0.020	0.018
	R-19 (16.34)	0.052	0.050	0.047	0.045	0.043	0.041	0.040	0.038	0.037	0.035	0.034	0.033	0.032	0.031	0.030	0.029	0.026	0.023	0.020	0.018	0.017
	R-21 (17.64)	0.049	0.047	0.044	0.043	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.025	0.022	0.020	0.018	0.017
	R-25 (20.25)	0.043	0.041	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.023	0.021	0.019	0.017	0.016
	R-30C (23.70)	0.038	0.036	0.035	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.027	0.027	0.026	0.025	0.025	0.024	0.021	0.019	0.018	0.016	0.015
	R-30 (23.70)	0.038	0.036	0.035	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.027	0.027	0.026	0.025	0.025	0.024	0.021	0.019	0.018	0.016	0.015
	R-38C (28.12)	0.032	0.031	0.030	0.029	0.029	0.028	0.027	0.026	0.026	0.025	0.024	0.024	0.023	0.023	0.022	0.022	0.020	0.018	0.016	0.015	0.014
	R-38 (28.12)	0.032	0.031	0.030	0.029	0.029	0.028	0.027	0.026	0.026	0.025	0.024	0.024	0.023	0.023	0.022	0.022	0.020	0.018	0.016	0.015	0.014

Copyrighted material provided through funding from the US Department of Energy, licensed to JULIO GORMAZ on 26-Oct-2010. Further reproduction or networking is prohibited.

with insulation located directly below the *floor* and ventilated airspace below the insulation. The heat flow path through the joist is calculated to be the same depth as the insulation. The *U-factors* include R-0.92 for interior air film—heat flow down, R-1.23 for carpet and pad, R-0.94 for 0.75 in. wood subfloor, and R-0.46 for semi-exterior air film. The weighting factors are 91% insulated cavity and 9% framing.

A5.4.2 Rated R-Value of Insulation for Wood-Framed and Other Floors

- **A5.4.2.1** The first *rated R-value of insulation* is for uncompressed insulation installed in the cavity between wood joists.
- **A5.4.2.2** It is acceptable for this insulation to also be *continuous insulation* uninterrupted by framing. All *continuous insulation* shall be installed either on the interior above the floor structure or below a framing cavity completely filled with insulation.

A5.4.3 U-Factors for Wood-Framed Floors

- **A5.4.3.1** The *U-factors* for wood-framed floors shall be taken from Table A5.4.
- **A5.4.3.2** It is not acceptable to use these *U-factors* if the framing is not wood.

A6. SLAB-ON-GRADE FLOORS

- **A6.1 General.** For the purpose of Section A1.2, the base assembly is a slab floor of 6 in. concrete poured directly on to the earth, the bottom of the slab is at grade line, and soil conductivity is 0.75 Btu/h·ft.°F. In contrast to the *U-factor* for *floors*, the *F-factor* for *slab-on-grade floors* is expressed per linear foot of building perimeter. *F-factors* are provided for unheated slabs and for heated slabs. *Unheated slab-on-grade floors* do not have heating elements, and *heated slab-on-grade floors* do have heating elements within or beneath the slab. *F-factors* are provided for three insulation configurations:
- Horizontal Insulation: continuous insulation is applied directly to the underside of the slab and extends inward horizontally from the perimeter for the distance specified or continuous insulation is applied downward from the top of the slab and then extends horizontally to the interior or the exterior from the perimeter for the distance specified.
- Vertical Insulation: continuous insulation is applied directly to the slab exterior, extending downward from the top of the slab for the distance specified.
- Fully Insulated Slab: continuous insulation extends downward from the top of the slab and along the entire perimeter and completely covers the entire area under the slab.

A6.2 Rated R-Value of Insulation for Slab-on-Grade Floors

- **A6.2.1** The *rated R-value of insulation* shall be installed around the perimeter of the *slab-on-grade floor* to the distance specified.
- **Exception:** For a monolithic *slab-on-grade floor*, the insulation shall extend from the top of the slab-on-grade to the bottom of the footing.

- **A6.2.2** Insulation installed inside the foundation wall shall extend downward from the top of the slab a minimum of the distance specified or to the top of the footing, whichever is less.
- A6.2.3 Insulation installed outside the foundation wall shall extend from the top of the slab or downward to at least the bottom of the slab and then horizontally to a minimum of the distance specified. In all climates, the horizontal insulation extending outside of the foundation shall be covered by pavement or by soil a minimum of 10 in. thick.

A6.3 F-Factors for Slab-on-Grade Floors

- **A6.3.1** *F-factors* for slab-on-grade floors shall be taken from Table A6.3.
- **A6.3.2** These *F-factors* are acceptable for all *slab-on-grade floors*.

A7. OPAQUE DOORS

All *opaque doors* with *U-factors* determined, certified, and labeled in accordance with NFRC 100 shall be assigned those *U-factors*.

- **A7.1 Unlabeled Opaque Doors.** Unlabeled *opaque doors* shall be assigned the following *U-factors*:
- a. Uninsulated single-layer metal *swinging doors* or *non-swinging doors*, including single-layer uninsulated *access hatches* and uninsulated smoke vents: 1.45
- b. Uninsulated double-layer metal *swinging doors* or *non-swinging doors*, including double-layer uninsulated *access hatches* and uninsulated smoke vents: 0.70
- c. Insulated metal *swinging doors*, including fire-rated *doors*, insulated *access hatches*, and insulated smoke vents: 0.50
- d. Wood *doors*, minimum nominal thickness of 1.75 in., including panel *doors* with minimum panel thickness of 1.125 in., solid core flush *doors*, and hollow core flush *doors*; 0.50
- e. Any other wood *door*: 0.60

A8. FENESTRATION

All *fenestration* with *U-factors, SHGC*, or visible light transmittance determined, certified, and labeled in accordance with NFRC 100, 200, and 300, respectively, shall be assigned those values.

- **A8.1 Unlabeled Skylights.** Unlabeled *skylights* shall be assigned the *U-factors* in Table A8.1A and are allowed to use the *SHGC*s and VLTs in Table A8.1B. The metal with thermal break frame category shall not be used unless all frame members have a thermal break equal to or greater than 0.25 in.
- **A8.2** Unlabeled Vertical Fenestration. Unlabeled *vertical fenestration*, both operable and fixed, shall be assigned the *U-factors*, *SHGCs*, and VLTs in Table A8.2.

TABLE A5.4 Assembly U-Factors for Wood-Joist Floors

										•												
Framing Type and	Cavity Insulation	Overall					Ó	Overall U-	Factor 1	for Asse	mbly of	Base Flo	or Plus C	ontinuou	s Insulati	all U-Factor for Assembly of Base Floor Plus Continuous Insulation (Uninterrupted by Framing)	terrupted	by Fran	uing)			
Spacing Width	R-Value: Rated	U-Factor for Entire Base Floor									Rat	ed R-Val	Rated R-Value of Continuous Insulation	ntinuous	Insulatio	a						
(Actual Depth)	(Effective Installed)	Assembly	R-1.00	R-2.00	R-3.00	R-1.00 R-2.00 R-3.00 R-4.00 R-5.00) R-5.0		0 R-7.0	0 R-8.0	0 R-9.00) R-10.00	0 R-11.00	0 R-12.0	0 R-13.0	0 R-14.00	0 R-15.0	0 R-20.0	0 R-25.0t	R-6.00 R-7.00 R-8.00 R-9.00 R-10.00 R-11.00 R-12.00 R-13.00 R-14.00 R-15.00 R-20.00 R-25.00 R-30.00 R-35.00 R-40.00	R-35.00	R-40.0
Wood Joists	S																					
5.5 in.	None (0.0)	0.282	0.220	0.180	0.153	0.220 0.180 0.153 0.132 0.117	0.117	7 0.105	5 0.095	5 0.087	0.080	0.074	0.069	0.064	0.060	0.057	0.054	0.042	0.035	0.030	0.026	0.023
	R-11 (11.0)	0.074	0.069	0.064	0.060	0.057	0.054	4 0.051	1 0.048	3 0.046	0.044	0.042	0.040	0.039	0.037	0.036	0.035	0.030	0.026	0.023	0.020	0.019
	R-13 (13.0)	990.0	0.062	0.058	0.055	0.052	0.049	9 0.047	7 0.045	5 0.043	0.041	0.039	0.038	0.036	0.035	0.034	0.033	0.028	0.025	0.022	0.020	0.018
	R-15 (15.0)	090.0	0.057	0.053		0.050 0.048	0.046	5 0.044	4 0.042	0.040	0.038	0.037	0.036	0.034	0.033	0.032	0.031	0.027	0.024	0.021	0.019	0.017
	R-19 (18.0)	0.051	0.048	0.046		0.044 0.042	0.040	0.038	8 0.037	7 0.036	0.034	0.033	0.032	0.031	0.030	0.029	0.028	0.025	0.022	0.020	0.018	0.017
	R-21 (21.0)	0.046	0.043	0.042	0.040	0.038	0.037	7 0.035	5 0.034	4 0.033	0.032	0.031	0.030	0.029	0.028	0.027	0.027	0.023	0.021	0.019	0.017	0.016
7.25 in.	R-25 (25.0)	0.039	0.037		0.036 0.035	0.033	0.032	2 0.031	0.030	0.029	0.028	0.028	0.027	0.026	0.025	0.025	0.024	0.022	0.019	0.018	0.016	0.015
	R-30C (30.0)	0.034	0.033	0.032	0.031	0.030	0.029	9 0.028	8 0.027	7 0.026	0.026	0.025	0.024	0.024	0.023	0.023	0.022	0.020	0.018	0.016	0.015	0.014
9.25 in.	R-30 (30.0)	0.033	0.032	0.031	0.030	0.029	0.028	8 0.027	7 0.027	7 0.026	0.025	0.024	0.024	0.023	0.023	0.022	0.022	0.020	0.018	0.016	0.015	0.014
11.25 in.	11.25 in. R-38C (38.0)	0.027	0.026	0.025	0.025	0.026 0.025 0.025 0.024 0.024	0.02	4 0.023	3 0.022	2 0.022	0.021	0.021	0.020	0.020	0.020	0.019	0.019	0.017	0.016	0.015	0.014	0.013
13.25 in.	R-38 (38.0)	0.026	0.026	0.026 0.025	0.024	0.024 0.024 0.023	0.03	3 0.023	3 0.022	2 0.022	0.021	0.021	0.020	0.020	0.019	0.019	0.019	0.017	0.016	0.015	0.014	0.013

TABLE A6.3 Assembly F-Factors for Slab-on-Grade Floors

					R	ated R-	Value of	Insulatio	on				
Insulation Description	R-0	R-5	R-7.5	R-10	R-15	R-20	R-25	R-30	R-35	R-40	R-45	R-50	R-55
Unheated Slabs													
None	0.73												
12 in. horizontal		0.72	0.71	0.71	0.71								
24 in. horizontal		0.70	0.70	0.70	0.69								
36 in. horizontal		0.68	0.67	0.66	0.66								
48 in. horizontal		0.67	0.65	0.64	0.63								
12 in. horizontal		0.61	0.60	0.58	0.57	0.567	0.565	0.564					
24 in. horizontal		0.58	0.56	0.54	0.52	0.510	0.505	0.502					
36 in. horizontal		0.56	0.53	0.51	0.48	0.472	0.464	0.460					
48 in. horizontal		0.54	0.51	0.48	0.45	0.434	0.424	0.419					
Fully insulated slab		0.46	0.41	0.36	0.30	0.261	0.233	0.213	0.198	0.186	0.176	0.168	0.161
Heated Slabs													
None	1.35												
12 in. horizontal		1.31	1.31	1.30	1.30								
24 in. horizontal		1.28	1.27	1.26	1.25								
36 in. horizontal		1.24	1.21	1.20	1.18								
48 in. horizontal		1.20	1.17	1.13	1.11								
12 in. horizontal		1.06	1.02	1.00	0.98	0.968	0.964	0.961					
24 in. horizontal		0.99	0.95	0.90	0.86	0.843	0.832	0.827					
36 in. horizontal		0.95	0.89	0.84	0.79	0.762	0.747	0.740					
48 in. horizontal		0.91	0.85	0.78	0.72	0.688	0.671	0.659					
Fully insulated slab		0.74	0.64	0.55	0.44	0.373	0.326	0.296	0.273	0.255	0.239	0.227	0.217

TABLE A8.1A Assembly U-Factors for Unlabeled Skylights

					Sloped Ins	tallation		
	Product Type			light with Curk at/domed, fixed			ed Skylight with plastic, flat/dome	out Curb d, fixed/operable)
	Frame Type	Aluminum	Aluminum	Reinforced		Aluminum	Aluminum	
ID	Glazing Type	without Thermal Break	with Thermal Break	Vinyl/ Aluminum Clad Wood	Wood/ Vinyl	without Thermal Break	with Thermal Break	Structural Glazing
	Single Glazing							
1	1/8 in. glass	1.98	1.89	1.75	1.47	1.36	1.25	1.25
2	1/4 in. acrylic/polycarb	1.82	1.73	1.60	1.31	1.21	1.10	1.10
3	1/8 in. acrylic/polycarb	1.90	1.81	1.68	1.39	1.29	1.18	1.18
	Double Glazing							
4	1/4 in. airspace	1.31	1.11	1.05	0.84	0.82	0.70	0.66
5	1/2 in. airspace	1.30	1.10	1.04	0.84	0.81	0.69	0.65
6	1/4 in. argon space	1.27	1.07	1.00	0.80	0.77	0.66	0.62
7	1/2 in. argon space	1.27	1.07	1.00	0.80	0.77	0.66	0.62
	Double Glazing, $e = 0.6$	0 on surface 2	or 3					
8	1/4 in. airspace	1.27	1.08	1.01	0.81	0.78	0.67	0.63
9	1/2 in. airspace	1.27	1.07	1.00	0.80	0.77	0.66	0.62
10	1/4 in. argon space	1.23	1.03	0.97	0.76	0.74	0.63	0.58
11	1/2 in. argon space	1.23	1.03	0.97	0.76	0.74	0.63	0.58
	Double Glazing, $e = 0.4$	0 on surface 2	or 3					
12	1/4 in. airspace	1.25	1.05	0.99	0.78	0.76	0.64	0.60
13	1/2 in. airspace	1.24	1.04	0.98	0.77	0.75	0.64	0.59
14	1/4 in. argon space	1.18	0.99	0.92	0.72	0.70	0.58	0.54
15	1/2 in. argon space	1.20	1.00	0.94	0.74	0.71	0.60	0.56
	Double Glazing, $e = 0.2$	0 on surface 2	or 3					
16	1/4 in. airspace	1.20	1.00	0.94	0.74	0.71	0.60	0.56
17	1/2 in. airspace	1.20	1.00	0.94	0.74	0.71	0.60	0.56
18	1/4 in. argon space	1.14	0.94	0.88	0.68	0.65	0.54	0.50
19	1/2 in. argon space	1.15	0.95	0.89	0.68	0.66	0.55	0.51
	Double Glazing, $e = 0.1$		or 3					
20	1/4 in. airspace	1.18	0.99	0.92	0.72	0.70	0.58	0.54
21	1/2 in. airspace	1.18	0.99	0.92	0.72	0.70	0.58	0.54
22	1/4 in. argon space	1.11	0.91	0.85	0.65	0.63	0.52	0.47
23	1/2 in. argon space	1.13	0.93	0.87	0.67	0.65	0.53	0.49
	Double Glazing, $e = 0.0$	5 on surface 2	or 3					
24	1/4 in. airspace	1.17	0.97	0.91	0.70	0.68	0.57	0.52
25	1/2 in. airspace	1.17	0.98	0.91	0.71	0.69	0.58	0.53
26	1/4 in. argon space	1.09	0.89	0.83	0.63	0.61	0.50	0.45
27	1/2 in. argon space	1.11	0.91	0.85	0.65	0.63	0.52	0.47
	Triple Glazing							
28	1/4 in. airspaces	1.12	0.89	0.84	0.64	0.64	0.53	0.48
29	1/2 in. airspaces	1.10	0.87	0.81	0.61	0.62	0.51	0.45
30	1/4 in. argon spaces	1.09	0.86	0.80	0.60	0.61	0.50	0.44
31	1/2 in. argon spaces	1.07	0.84	0.79	0.59	0.59	0.48	0.42

TABLE A8.1A Assembly U-Factors for Unlabeled Skylights (continued)

					Sloped Ins	tallation		
	Product Type			light with Curb at/domed, fixed			ed Skylight with plastic, flat/domeo	out Curb d, fixed/operable)
ID	Frame Type Glazing Type	Aluminum without Thermal Break	Aluminum with Thermal Break	Reinforced Vinyl/ Aluminum Clad Wood	Wood/ Vinyl	Aluminum without Thermal Break	Aluminum with Thermal Break	Structural Glazing
	Triple Glazing, $e = 0.20$	on surface 2,3	,4, or 5					
32	1/4 in. airspace	1.08	0.85	0.79	0.59	0.60	0.49	0.43
33	1/2 in. airspace	1.05	0.82	0.77	0.57	0.57	0.46	0.41
34	1/4 in. argon space	1.02	0.79	0.74	0.54	0.55	0.44	0.38
35	1/2 in. argon space	1.01	0.78	0.73	0.53	0.54	0.43	0.37
	Triple Glazing, $e = 0.20$	on surfaces 2	or 3 and 4 or 5					
36	1/4 in. airspace	1.03	0.80	0.75	0.55	0.56	0.45	0.39
37	1/2 in. airspace	1.01	0.78	0.73	0.53	0.54	0.43	0.37
38	1/4 in. argon space	0.99	0.75	0.70	0.50	0.51	0.40	0.35
39	1/2 in. argon space	0.97	0.74	0.69	0.49	0.50	0.39	0.33
	Triple Glazing, $e = 0.10$	on surfaces 2	or 3 and 4 or 5					
40	1/4 in. airspace	1.01	0.78	0.73	0.53	0.54	0.43	0.37
41	1/2 in. airspace	0.99	0.76	0.71	0.51	0.52	0.41	0.36
42	1/4 in. argon space	0.96	0.73	0.68	0.48	0.49	0.38	0.32
43	1/2 in. argon space	0.95	0.72	0.67	0.47	0.48	0.37	0.31
	Quadruple Glazing, $e =$	0.10 on surfac	es 2 or 3 and 4	or 5				
44	1/4 in. airspace	0.97	0.74	0.69	0.49	0.50	0.39	0.33
45	1/2 in. airspace	0.94	0.71	0.66	0.46	0.47	0.36	0.30
46	1/4 in. argon space	0.93	0.70	0.65	0.45	0.46	0.35	0.30
47	1/2 in. argon space	0.91	0.68	0.63	0.43	0.44	0.33	0.28
48	1/4 in. krypton spaces	0.88	0.65	0.60	0.40	0.42	0.31	0.25

TABLE A8.1B Assembly SHGCs and Assembly Visible Light Transmittances (VLTs) for Unlabeled Skylights

	Glazing Type:	Unlabeled Skylig	hts (Include	es glass/pl	lastic, flat	domed,	fixed/ope	rable)
Glass Type	Number of glazing layers Number and emissivity of coatings	Frame:	Metal v Therma		Metal Therma	with al Break		/Vinyl/ rglass
	(Glazing is glass except where noted)	Characteristic:	SHGC	VLT	SHGC	VLT	SHGC	VLT
	Single glazing, 1/8 in. glass		0.82	0.76	0.78	0.76	0.73	0.73
	Single glazing, 1/4 in. glass		0.78	0.75	0.74	0.75	0.69	0.72
	Single glazing, acrylic/polycarbonate		0.83	0.92	0.83	0.92	0.83	0.92
	Double glazing		0.68	0.66	0.64	0.66	0.59	0.64
	Double glazing, $E = 0.40$ on surface 2 or 3		0.71	0.65	0.67	0.65	0.62	0.63
	Double glazing, $E = 0.20$ on surface 2 or 3		0.66	0.61	0.62	0.61	0.57	0.59
	Double glazing, $E = 0.10$ on surface 2 or 3		0.59	0.63	0.55	0.63	0.51	0.61
	Double glazing, acrylic/polycarbonate		0.77	0.89	0.77	0.89	0.77	0.89
Class	Triple glazing		0.60	0.59	0.56	0.59	0.52	0.57
Clear	Triple glazing, $E = 0.40$ on surface 2, 3, 4, or 5		0.64	0.60	0.60	0.60	0.56	0.57
	Triple glazing, $E = 0.20$ on surface 2, 3, 4, or 5		0.59	0.55	0.55	0.55	0.51	0.53
	Triple glazing, $E = 0.10$ on surface 2, 3, 4, or 5		0.54	0.56	0.50	0.56	0.46	0.54
	Triple glazing, $E = 0.40$ on surfaces 3 and 5		0.62	0.57	0.58	0.57	0.53	0.55
	Triple glazing, $E = 0.20$ on surfaces 3 and 5		0.56	0.51	0.52	0.51	0.48	0.49
	Triple glazing, $E = 0.10$ on surfaces 3 and 5		0.47	0.54	0.43	0.54	0.40	0.52
	Triple glazing, acrylic/polycarbonate		0.71	0.85	0.71	0.85	0.71	0.85
	Quadruple glazing, $E = 0.10$ on surfaces 3 and 5		0.41	0.48	0.37	0.48	0.33	0.46
	Quadruple glazing, acrylic/polycarbonate		0.65	0.81	0.65	0.81	0.65	0.81
	Single glazing, 1/8 in. glass		0.70	0.58	0.66	0.58	0.62	0.56
	Single glazing, 1/4 in. glass		0.61	0.45	0.56	0.45	0.52	0.44
	Single glazing, acrylic/polycarbonate		0.46	0.27	0.46	0.27	0.46	0.27
	Double glazing		0.50	0.40	0.46	0.40	0.42	0.39
	Double glazing, $E = 0.40$ on surface 2 or 3		0.59	0.50	0.55	0.50	0.50	0.48
	Double glazing, $E = 0.20$ on surface 2 or 3		0.47	0.37	0.43	0.37	0.39	0.36
	Double glazing, $E = 0.10$ on surface 2 or 3		0.43	0.38	0.39	0.38	0.35	0.37
	Double glazing, acrylic/polycarbonate		0.37	0.25	0.37	0.25	0.37	0.25
F* .4 . J	Triple glazing		0.42	0.22	0.37	0.22	0.34	0.21
Tinted	Triple glazing, $E = 0.40$ on surface 2, 3, 4, or 5		0.53	0.45	0.49	0.45	0.45	0.44
	Triple glazing, $E = 0.20$ on surface 2, 3, 4, or 5		0.42	0.33	0.38	0.33	0.35	0.32
	Triple glazing, $E = 0.10$ on surface 2, 3, 4, or 5		0.39	0.34	0.35	0.34	0.31	0.33
	Triple glazing, $E = 0.40$ on surfaces 3 and 5		0.51	0.43	0.47	0.43	0.43	0.42
	Triple glazing, $E = 0.20$ on surfaces 3 and 5		0.40	0.31	0.36	0.31	0.32	0.29
	Triple glazing, $E = 0.10$ on surfaces 3 and 5		0.34	0.32	0.30	0.32	0.27	0.31
	Triple glazing, acrylic/polycarbonate		0.30	0.23	0.30	0.23	0.30	0.23
	Quadruple glazing, $E = 0.10$ on surfaces 3 and 5		0.30	0.29	0.26	0.29	0.23	0.28
	Quadruple glazing, acrylic/polycarbonate		0.27	0.25	0.27	0.25	0.27	0.25

TABLE A8.2 Assembly U-Factors, Assembly SHGCs, and Assembly Visible Light Transmittances (VLTs) for Unlabeled Vertical Fenestration

			Un	labeled Ve	rtical Fenestrat	ion	
Frame Type All frame types Wood, vinyl, or fiberglass frames Metal and other	Glazing Type		Clear Glass		7	Tinted Glass	
		U-Factor	SHGC	VLT	U-Factor	SHGC	VLT
A 11 C	Single glazing	1.25	0.82	0.76	1.25	0.70	0.58
All frame types	Glass block	0.60	0.56	0.56	n.a.	Tinted Glass	n.a.
Wood, vinyl, or	Double glazing	0.60	0.59	0.64	0.60	0.42	0.39
fiberglass frames	Triple glazing	0.45	0.52	0.57	0.45	0.34	0.21
Metal and other	Double glazing	0.90	0.68	0.66	0.90	0.50	0.40
Wood, vinyl, or fiberglass frames	Triple glazing	0.70	0.60	0.59	0.70	0.42	0.22

A9. DETERMINATION OF ALTERNATE ASSEMBLY U-FACTORS, C-FACTORS, F-FACTORS, OR HEAT CAPACITIES

A9.1 General. Component *U-factors* for other opaque assemblies shall be determined in accordance with Section A9 only if approved by the *building official* in accordance with Section A1.2. The procedures required for each class of construction are specified in Section A9.2. Testing shall be performed in accordance with Section A9.3. Calculations shall be performed in accordance with Section A9.4.

A9.2 Required Procedures. Two- or three-dimensional finite difference and finite volume computer models shall be an acceptable alternative method to calculating the thermal performance values for all assemblies and constructions listed below. The following procedures shall also be permitted to determine all alternative *U-factors*, *F-factors*, and *C-factors*.

a. Roofs

- Roofs with insulation entirely above deck: testing or series calculation method.
- 2. Metal building roofs: testing.
- 3. *Attic roofs*, wood joists: testing or parallel path calculation method.
- 4. Attic roofs, steel joists: testing or parallel path calculation method using the insulation/framing layer adjustment factors in Table A9.2A or modified zone calculation method.
- Attic roofs, concrete joists: testing or parallel path calculation method if concrete is solid and uniform or isothermal planes calculation method if concrete has hollow sections.
- Other attic roofs and other roofs: testing or two-dimensional calculation method.

b. Above-Grade Walls

 Mass walls: testing or isothermal planes calculation method or two-dimensional calculation method. The parallel path calculation method is not acceptable.

- 2. *Metal building walls*: testing.
- 3. *Steel-framed walls*: testing or parallel path calculation method using the insulation/framing layer adjustment factors in Table A9.2B or the modified zone method.
- 4. *Wood-framed walls*: testing or parallel path calculation method.
- Other walls: testing or two-dimensional calculation method.

c. Below-Grade Walls

- Mass walls: testing or isothermal planes calculation method or two-dimensional calculation method. The parallel path calculation method is not acceptable.
- 2. Other walls: testing or two-dimensional calculation method.

d. Floors

- Mass floors: testing or parallel path calculation method if concrete is solid and uniform or isothermal planes calculation method if concrete has hollow sections.
- 2. *Steel joist floors*: testing or modified zone calculation method.
- 3. *Wood joist floors*: testing or parallel path calculation method or isothermal planes calculation method.
- Other floors: testing or two-dimensional calculation method.
- e. Slab-on-Grade Floors

 No testing or calculations allowed.

A9.3 Testing Procedures

A9.3.1 Building Material Thermal Properties. If *building material* R-values or thermal conductivities are determined by testing, one of the following test procedures shall be used:

- a. ASTM C177
- b. ASTM C518
- c. ASTM C1363

For concrete, the oven-dried conductivity shall be multiplied by 1.2 to reflect the moisture content as typically installed.

TABLE A9.2A Effective Insulation/Framing Layer R-Values for Roof and Floor Insulation Installed Between Metal Framing (4 ft on Center)

Rated R-Value of Insulation	Correction Factor	Framing/Cavity R-Value	Rated R-Value of Insulation	Correction Factor	Framing/Cavity R-Value
0.00	1.00	0.00	20.00	0.85	17.00
4.00	0.97	3.88	21.00	0.84	17.64
5.00	0.96	4.80	24.00	0.82	19.68
8.00	0.94	7.52	25.00	0.81	20.25
10.00	0.92	9.20	30.00	0.79	23.70
11.00	0.91	10.01	35.00	0.76	26.60
12.00	0.90	10.80	38.00	0.74	28.12
13.00	0.90	11.70	40.00	0.73	29.20
15.00	0.88	13.20	45.00	0.71	31.95
16.00	0.87	13.92	50.00	0.69	34.50
19.00	0.86	16.34	55.00	0.67	36.85

TABLE A9.2B Effective Insulation/Framing Layer R-Values for Wall Insulation Installed Between Steel Framing

Nominal Depth of Cavity, in.	Actual Depth of Cavity, in.	Rated R-Value of Airspace or Insulation	Effective Framing/Cavity R-Value at 16 in. on Center	Effective Framing/Cavity R-Value at 24 in. on Center
		Empty (Cavity, No Insulation	
4	3.5	R-0.91	0.79	0.91
		In	sulated Cavity	
4	3.5	R-11	5.5	6.6
4	3.5	R-13	6.0	7.2
4	3.5	R-15	6.4	7.8
6	6.0	R-19	7.1	8.6
6	6.0	R-21	7.4	9.0
8	8.0	R-25	7.8	9.6

A9.3.2 Assembly U-Factors. If assembly *U-factors* are determined by testing, ASTM C1363 test procedures shall be used.

Product samples tested shall be production line material or representative of material as purchased by the consumer or contractor. If the assembly is too large to be tested at one time in its entirety, then either a representative portion shall be tested or different portions shall be tested separately and a weighted average determined. To be representative, the portion tested shall include edges of panels, joints with other panels, typical framing percentages, and thermal bridges.

A9.4 Calculation Procedures and Assumptions. The following procedures and assumptions shall be used for all calculations. R-values for air films, insulation, and *building materials* shall be taken from Sections A9.4.1 through A9.4.3, respectively. In addition, the appropriate assumptions listed in Sections A2 through A8, including framing factors, shall be used.

A9.4.1 Air Films. Prescribed R-values for air films shall be as follows:

R-Value	Condition
0.17	All exterior surfaces
0.46	All semi-exterior surfaces
0.61	Interior horizontal surfaces, heat flow up
0.92	Interior horizontal surfaces, heat flow down
0.68	Interior vertical surfaces

- **A9.4.1.1** Exterior surfaces are areas exposed to the wind.
- **A9.4.1.2** Semi-exterior surfaces are protected surfaces that face attics, crawlspaces, and parking garages with natural or mechanical ventilation.
- **A9.4.1.3** Interior surfaces are surfaces within enclosed spaces.

A9.4.1.4 The R-value for cavity airspaces shall be taken from Table A9.4A based on the emissivity of the cavity from Table A9.4B. No credit shall be given for airspaces in cavities that contain any insulation or are less than 0.5 in. The values for 3.5 in. cavities shall be used for cavities of that width and greater.

TABLE A9.4A Values for Cavity Air Spaces

				R-Value		
Component	Airspace Thickness, in.		I	Effective Emissiv	rity	
		0.03	0.05	0.20	0.50	0.82
	0.50	2.13	2.04	1.54	1.04	0.77
D £	0.75	2.33	2.22	1.64	1.09	0.80
Roof	1.50	2.53	2.41	1.75	1.13	0.82
	3.50	2.83	2.66	1.88	1.19	0.85
	0.50	2.54	2.43	1.75	1.13	0.82
Wall	0.75	3.58	3.32	2.18	1.30	0.90
wan	1.50	3.92	3.62	2.30	1.34	0.93
	3.50	3.67	3.40	2.21	1.31	0.91
	0.50	2.55	1.28	1.00	0.69	0.53
Floor	0.75	1.44	1.38	1.06	0.73	0.54
L100L	1.50	2.49	2.38	1.76	1.15	0.85
	3.50	3.08	2.90	2.01	1.26	0.90

TABLE A9.4B Emittance Values of Various Surfaces and Effective Emittances of Air Spaces

		Effective	Emittance
Surface	Average Emittance e	e eff of A	Air Space
	•	One Surface e; Other, 0.9	Both Surfaces Emittance e
Aluminum foil, bright	0.05	0.05	0.03
Aluminum foil, with condensate just visible (>0.7 gr/ft²)	0.30	0.29	_
Aluminum foil, with condensate clearly visible (>2.9 gr/ft²)	0.70	0.65	_
Aluminum sheet	0.12	0.12	0.06
Aluminum coated paper, polished	0.20	0.20	0.11
Steel, galv., bright	0.25	0.24	0.15
Aluminum paint	0.50	0.47	0.35
Building materials: wood, paper, masonry, nonmetallic paints	0.90	0.82	0.82
Regular glass	0.84	0.77	0.72

A9.4.2 Insulation R-Values. Insulation R-values shall be determined as follows:

- a. For insulation that is not compressed, the *rated R-value of insulation* shall be used.
- b. For calculation purposes, the effective R-value for insulation that is uniformly compressed in confined cavities shall be taken from Table A9.4C.
- c. For calculation purposes, the effective R-value for insulation installed in cavities in attic roofs with steel joists shall be taken from Table A9.2A.
- d. For calculation purposes, the effective R-value for insulation installed in cavities in steel-framed walls shall be taken from Table A9.2B.

A9.4.3 Building Material Thermal Properties. R-values for *building materials* shall be taken from Table A9.4D. Concrete block R-values shall be calculated using the isothermal planes method or a two-dimensional calculation program, thermal conductivities from Table A9.4E, and dimensions from ASTM C90. The parallel path calculation method is not acceptable.

Exception: R-values for *building materials* or thermal conductivities determined from testing in accordance with Section A9.3.

A9.4.4 Building Material Heat Capacities. The *HC* of assemblies shall be calculated using published values for the unit weight and specific heat of all building material components that make up the assembly.

TABLE A9.4C Effective R-Values for Fiberglass

Rated R-	Value	38	30	22	21	19	15	13	11
Standard Thio	ckness, in.	12	9.5	6.5	5.5	6	3.5	3.5	3.5
Nominal Lumber Size, in.	Actual Depth of Cavity, in.				ective Insul nstalled in				
2 × 12	11.25	37	_	_	_	_	_	_	_
2 × 10	9.25	32	30	_	_	_	_	_	_
2×8	7.25	27	26	22	21	19	_	_	_
2×6	5.5	_	21	20	21	18	_	_	_
2×4	3.5	_	_	14	_	13	15	13	11
	2.5	_	_	_	_	_	_	9.8	_
	1.5	_	_	_	_	_	_	6.3	6

TABLE A9.4D R-Values for Building Materials

Material	Nominal Size, in.	Actual Size, in.	R-Value
Carpet and rubber pad	_	_	1.23
	_	2	0.13
	_	4	0.25
Concrete at R-0.0625/in.	_	6	0.38
	_	8	0.5
	_	10	0.63
	_	12	0.75
Flooring, wood subfloor	_	0.75	0.94
	_	0.5	0.45
Gypsum board	_	0.625	0.56
Metal deck	_	_	0
Roofing, built-up	_	0.375	0.33
Sheathing, vegetable fiber board, 0.78 in.	_	0.78	2.06
Soil at R-0.104/in.	_	12	1.25
Steel, mild		1	0.0031807
Stucco	_	0.75	0.08
Wood, 2×4 at R-1.25/in.	4	3.5	4.38
Wood, 2×4 at R-1.25/in.	6	5.5	6.88
Wood, 2×4 at R-1.25/in.	8	7.25	9.06
Wood, 2×4 at R-1.25/in.	10	9.25	11.56
Wood, 2×4 at R-1.25/in.	12	11.25	14.06
Wood, 2×4 at R-1.25/in.	14	13.25	16.56

TABLE A9.4E Thermal Conductivity of Concrete Block Material

Concrete Block Density, lb/ft ³	Thermal Conductivity, Btu·in./h·ft ² .°F
80	3.7
85	4.2
90	4.7
95	5.1
100	5.5
105	6.1
110	6.7
115	7.2
120	7.8
125	8.9
130	10.0
135	11.8
140	13.5

Copyrighted material provided through funding from the US Department of Energy, licensed to JULIO GORMAZ on 26-Oct-2010. Further reproduction or networking is prohibited.

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX B—BUILDING ENVELOPE CLIMATE CRITERIA

B1. GENERAL

This normative appendix provides the information to determine both United States and international climate zones. For US locations, use either Figure B-1 or Table B-1 to determine the climate zone number and letter that are required for determining compliance regarding various sections and tables in this standard. Figure B-1 contains the county-by-county climate zone map for the United States. Table B-1 lists each state and major counties within the state and shows the climate number and letter for each county listed.

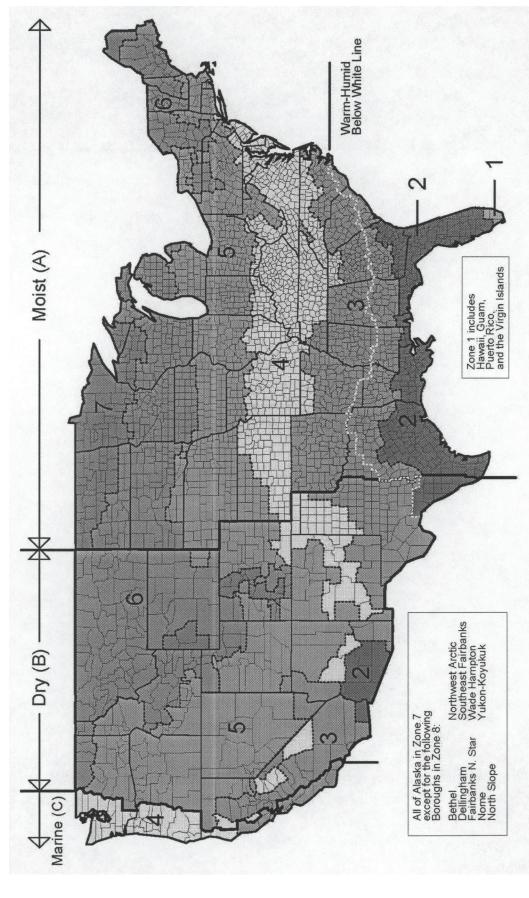


Figure B-1 Climate zones for United States locations.

TABLE B-1 US Climate Zones

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
Alabama (AL)		(Arkansas cont.)		(Colorado cont.)		Georgia (GA)	
Zone 3a Except		Washington	4A	Las Animas	4B	Zone 3A Excep	t
Baldwin	2A	California (CA)		Otero	4B	Appling	2A
Mobile	2A	Zone 3B Except		Alamosa	6B	Atkinson	2A
Alaska (AK)		Imperial	2B	Archuleta	6B	Bacon	2A
Zone 7 Except		Alameda	3C	Chaffee	6B	Baker	2A
Bethel (CA)	8	Marin	3C	Conejos	6B	Berrien	2A
Dillingham (CA)	8	Mendocino	3C	Costilla	6B	Brantley	2A
Fairbanks North Star	8	Monterey	3C	Custer	6B	Brooks	2A
Nome (CA)	8	Napa	3C	Dolores	6B	Bryan	2A
North Slope	8	San Benito	3C	Eagle	6B	Camden	2A
Northwest Arctic	8	San Francisco	3C	Moffat	6B	Charlton	2A
Southeast Fairbanks (CA)	8	San Luis Obispo	3C	Ouray	6B	Chatham	2A
Wade Hampton (CA)	8	San Mateo	3C	Rio Blanco	6B	Clinch	2A
Yukon-Koyukuk (CA)	8	Santa Barbara	3C	Saguache	6B	Colquitt	2A
Arizona (AZ)		Santa Clara	3C	San Miguel	6B	Cook	2A
Zone 3B Except		Santa Cruz	3C	Clear Creek	7	Decatur	2A
La Paz	2B	Sonoma	3C	Grand	7	Echols	2A
Maricopa	2B	Ventura	3C	Gunnison	7	Effingham	2A
Pima	2B	Amador	4B	Hinsdale	7	Evans	2A
Pinal	2B	Calaveras	4B	Jackson	7	Glynn	2A
Yuma	2B	Del Norte	4B	Lake	7	Grady	2A
Gila	4B	El Dorado	4B	Mineral	7	Jeff Davis	2A
Yavapai	4B	Humboldt	4B	Park	7	Lanier	2A
Apache	5B	Inyo	4B	Pitkin	7	Liberty	2A
Coconino	5B	Lake	4B	Rio Grande	7	Long	2A
Navajo	5B	Mariposa	4B	Routt	7	Lowndes	2A
Arkansas (AR)		Trinity	4B	San Juan	7	McIntosh	2A
Zone 3A Except		Tuolumme	4B	Summitt	7	Miller	2A
Baxter	4A	Lassen	5B	Connecticut (CT)		Mitchell	2A
Benton	4A	Modoc	5B	Zone 5A		Pierce	2A
Boone	4A	Nevada	5B	Delaware (DE)		Seminole	2A
Carroll	4A	Plumas	5B	Zone 4A		Tattnall	2A
Fulton	4A	Sierra	5B	District of Columbia (DC)		Thomas	2A
Izard	4A	Siskiyou	5B	Zone 4A		Toombs	2A
Madison	4A	Alpine	6B	Florida (FL)		Ware	2A
Marion	4A	Mono	6B	Zone 2A Exce	pt	Wayne	2A
Newton	4A	Colorado (CO)		Broward	1A	Banks	4A
Searcy	4A	Zone 5B Except		Miami-Dade	1A	Catoosa	4A
Stone	4A	Baca	4B	Monroe	1A	Chattooga	4A

TABLE B-1 US Climate Zones (continued)

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
(Georgia cont.)		(Idaho cont.)		(Illinois cont.)		(Iowa cont.)	
Dade	4A	Payette	5B	Wayne	4A	Buchanan	6A
Dawson	4A	Power	5B	White	4A	Buena Vista	6A
Fannin	4A	Shoshone	5B	Williamson	4A	Butler	6A
Floyd	4A	Twin Falls	5B	Indiana (IN)		Calhoun	6A
Franklin	4A	Washington	5B	Zone 5A Except		Cerro Gordo	6A
Gilmer	4A	Illinois (IL)		Brown	4A	Cherokee	6A
Gordon	4A	Zone 5A Except		Clark	4A	Chickasaw	6A
Habersham	4A	Alexander	4A	Crawford	4A	Clay	6A
Hall	4A	Bond	4A	Daviess	4A	Clayton	6A
Lumpkin	4A	Christian	4A	Dearborn	4A	Delaware	6A
Murray	4A	Clay	4A	Dubois	4A	Dickinson	6A
Pickens	4A	Clinton	4A	Floyd	4A	Emmet	6A
Rabun	4A	Crawford	4A	Gibson	4A	Fayette	6A
Stephens	4A	Edwards	4A	Greene	4A	Floyd	6A
Towns	4A	Effingham	4A	Harrison	4A	Franklin	6A
Union	4A	Fayette	4A	Jackson	4A	Grundy	6A
Walker	4A	Franklin	4A	Jefferson	4A	Hamilton	6A
White	4A	Gallatin	4A	Jennings	4A	Hancock	6A
Whitfield	4A	Hamilton	4A	Knox	4A	Hardin	6A
Hawaii (HI)		Hardin	4A	Lawrence	4A	Howard	6A
Zone 1A		Jackson	4A	Martin	4A	Humboldt	6A
Idaho (ID)		Jasper	4A	Monroe	4A	Ida	6A
Zone 6B Except		Jefferson	4A	Ohio	4A	Kossuth	6A
Ada	5B	Johnson	4A	Orange	4A	Lyon	6A
Benewah	5B	Lawrence	4A	Perry	4A	Mitchell	6A
Canyon	5B	Macoupin	4A	Pike	4A	O'Brien	6A
Cassia	5B	Madison	4A	Posey	4A	Osceola	6A
Clearwater	5B	Monroe	4A	Ripley	4A	Palo Alto	6A
Elmore	5B	Montgomery	4A	Scott	4A	Plymouth	6A
Gem	5B	Perry	4A	Spencer	4A	Pocahontas	6A
Gooding	5B	Pope	4A	Sullivan	4A	Sac	6A
Idaho	5B	Pulaski	4A	Switzerland	4A	Sioux	6A
Jerome	5B	Randolph	4A	Vanderburgh	4A	Webster	6A
Kootenai	5B	Richland	4A	Warrick	4A	Winnebago	6A
Latah	5B	Saline	4A	Washington	4A	Worth	6A
Lewis	5B	Shelby	4A	Iowa (IA)		Wright	6A
Lincoln	5B	St. Clair	4A	Zone 5A Except		Kansas (KS)	
Minidoka	5B	Union	4A	Allamakee	6A	Zone 4A Except	
Nez Perce	5B	Wabash	4A	Black Hawk	6A	Cheyenne	5A
Owyhee	5B	Washington	4A	Bremer	6A	Cloud	5A

TABLE B-1 US Climate Zones (continued)

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
(Kansas cont.)		(Louisiana cont.)		(Michigan cont.)		(Minnesota cont.)	
Decatur	5A	Jackson	3A	Grand Traverse	6A	Cass	7
Ellis	5A	La Salle	3A	Huron	6A	Clay	7
Gove	5A	Lincoln	3A	Iosco	6A	Clearwater	7
Graham	5A	Madison	3A	Isabella	6A	Cook	7
Greeley	5A	Morehouse	3A	Kalkaska	6A	Crow Wing	7
Hamilton	5A	Natchitoches	3A	Lake	6A	Grant	7
Jewell	5A	Ouachita	3A	Leelanau	6A	Hubbard	7
Lane	5A	Red River	3A	Manistee	6A	Itasca	7
Logan	5A	Richland	3A	Marquette	6A	Kanabec	7
Mitchell	5A	Sabine	3A	Mason	6A	Kittson	7
Ness	5A	Tensas	3A	Mecosta	6A	Koochiching	7
Norton	5A	Union	3A	Menominee	6A	Lake	7
Osborne	5A	Vernon	3A	Missaukee	6A	Lake of the Woods	7
Phillips	5A	Webster	3A	Montmorency	6A	Mahnomen	7
Rawlins	5A	West Carroll	3A	Newaygo	6A	Marshall	7
Republic	5A	Winn	3A	Oceana	6A	Mille Lacs	7
Rooks	5A	Maine (ME)		Ogemaw	6A	Norman	7
Scott	5A	Zone 6A Except		Osceola	6A	Otter Trail	7
Sheridan	5A	Aroostook	7	Oscoda	6A	Pennington	7
Sherman	5A	Maryland (MD)		Otsego	6A	Pine	7
Smith	5A	Zone 4A Except		Presque Isle	6A	Polk	7
Thomas	5A	Garrett	5A	Roscommon	6A	Red Lake	7
Trego	5A	Massachusetts (MA)		Sanilac	6A	Roseau	7
Wallace	5A	Zone 5		Wexford	6A	St. Louis	7
Wichita	5A	Michigan (MI)		Baraga	7	Wadena	7
Kentucky (KY)		Zone 5A Except		Chippewa	7	Wilkin	7
Zone 4A		Alcona	6A	Gogebic	7	Mississippi (MS)	
Louisiana (LA)		Alger	6A	Houghton	7	Zone 3A Excep	t
Zone 2A Except		Alpena	6A	Iron	7	Hancock	2A
Bienville	3A	Antrim	6A	Keweenaw	7	Harrison	2A
Bossier	3A	Arenac	6A	Luce	7	Jackson	2A
Caddo	3A	Benzie	6A	Mackinac	7	Pearl River	2A
Caldwell	3A	Charlevoix	6A	Ontonagon	7	Stone	2A
Catahoula	3A	Cheboygan	6A	Schoolcraft	7	Missouri (MO)	
Claiborne	3A	Clare 6A Minnesota (MN)		Zone 4A Except			
Concordia	3A	Crawford	6A	Zone 6A Except		Adair	5A
De Soto	3A	Delta	6A	Aitkin	7	Andrew	5A
East Carroll	3A	Dickinson	6A	Becker	7	Atchison	5A
Franklin	3A	Emmet	6A	Beltrami	7	Buchanan	5A
Grant	3A	Gladwin	6A	Carlton	7	Caldwell	5A

TABLE B-1 US Climate Zones (continued)

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
(Missouri cont.)		(New Jersey cont.)		(New York cont.)		(North Carolina cont.)	
Chariton	5A	Hunterdon	5A	Cattaraugus	6A	Duplin	3A
Clark	5A	Mercer	5A	Chenango	6A	Edgecombe	3A
Clinton	5A	Morris	5A	Clinton	6A	Gaston	3A
Daviess	5A	Passaic	5A	Delaware	6A	Greene	3A
Gentry	5A	Somerset	5A	Essex	6A	Hoke	3A
Grundy	5A	Sussex	5A	Franklin	6A	Hyde	3A
Harrison	5A	Warren	5A	Fulton	6A	Johnston	3A
Holt	5A	New Mexico (NM)		Hamilton	6A	Jones	3A
Knox	5A	Zone 5B Except	t	Herkimer	6A	Lenoir	3A
Lewis	5A	Chaves	3B	Jefferson	6A	Martin	3A
Linn	5A	Dona Ana	3B	Lewis	6A	Mecklenberg	3A
Livingston	5A	Eddy	3B	Madison	6A	Montgomery	3A
Macon	5A	Hidalgo	3B	Montgomery	6A	Moore	3A
Marion	5A	Lea	3B	Oneida	6A	New Hanover	3A
Mercer	5A	Luna	3B	Otsego	6A	Onslow	3A
Nodaway	5A	Otero	3B	Schoharie	6A	Pamlico	3A
Pike	5A	Bernalillo	4B	Schuyler	6A	Pasquotank	3A
Putnam	5A	Curry	4B	St. Lawrence	6A	Pender	3A
Ralls	5A	DeBaca	4B	Steuben	6A	Perquimans	3A
Schuyler	5A	Grant	4B	Sullivan	6A	Pitt	3A
Scotland	5A	Guadalupe	4B	Tompkins	6A	Randolph	3A
Shelby	5A	Lincoln	4B	Ulster	6A	Richmond	3A
Sullivan	5A	Quay	4B	Warren	6A	Robeson	3A
Worth	5A	Roosevelt	4B	Wyoming	6A	Rowan	3A
Montana (MT)		Sierra	4B	North Carolina (NC)		Sampson	3A
Zone 6B		Socorro	4B	Zone 4A Except	t	Scotland	3A
Nebraska (NE)		Union	4B	Anson	3A	Stanly	3A
Zone 5A		Valencia	4B	Beaufort	3A	Tyrrell	3A
Nevada (NV)		New York (NY)		Bladen	3A	Union	3A
Zone 5B Except		Zone 5A Except	t	Brunswick	3A	Washington	3A
Clark	3B	Bronx	4A	Cabarrus	3A	Wayne	3A
New Hampshire (NH)		Kings	4A	Camden	3A	Wilson	3A
Zone 6A Except		Nassau	4A	Carteret	3A	Alleghany	5A
Cheshire	5A	New York	4A	Chowan	3A	Ashe	5A
Hillsborough	5A	Queens	4A	Columbus	3A	Avery	5A
Rockingham	5A	Richmond	4A	Craven	3A	Mitchell	5A
Strafford	5A	Suffolk	4A	Cumberland	3A	Watauga	5A
New Jersey (NJ)		Westchester	4A	Currituck	3A	Yancey	5A
Zone 4A Except		Allegany	6A	Dare	3A	North Dakota (ND)	
Bergen	5A	Broome	6A	Davidson	3A	Zone 7 Except	

TABLE B-1 US Climate Zones (continued)

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
(North Dakota cont.)		Oregon (OR)		(South Dakota cont.)		(Texas cont.)	
Adams	6A	Zone 4C Except		Jackson	5A	Calhoun	2A
Billings	6A	Baker	5B	Mellette	5A	Cameron	2A
Bowman	6A	Crook	5B	Todd	5A	Chambers	2A
Burleigh	6A	Deschutes	5B	Tripp	5A	Cherokee	2A
Dickey	6A	Gilliam	5B	Union	5A	Colorado	2A
Dunn	6A	Grant	5B	Yankton	5A	Comal	2A
Emmons	6A	Harney	5B	Tennessee (TN)		Coryell	2A
Golden Valley	6A	Hood River	5B	Zone 4A Except		DeWitt	2A
Grant	6A	Jefferson	5B	Chester	3A	Dimmit	2B
Hettinger	6A	Klamath	5B	Crockett	3A	Duval	2A
LaMoure	6A	Lake	5B	Dyer	3A	Edwards	2B
Logan	6A	Malheur	5B	Fayette	3A	Falls	2A
McIntosh	6A	Morrow	5B	Hardeman	3A	Fayette	2A
McKenzie	6A	Sherman	5B	Hardin	3A	Fort Bend	2A
Mercer	6A	Umatilla	5B	Haywood	3A	Freestone	2A
Morton	6A	Union	5B	Henderson	3A	Frio	2B
Oliver	6A	Wallowa	5B	Lake	3A	Galveston	2A
Ransom	6A	Wasco	5B	Lauderdale	3A	Goliad	2A
Richland	6A	Wheeler	5B	Madison	3A	Gonzales	2A
Sargent	6A	Pennsylvania (PA)		McNairy	3A	Grimes	2A
Sioux	6A	Zone 5A Except		Shelby	3A	Guadalupe	2A
Slope	6A	Bucks	4A	Tipton	3A	Hardin	2A
Stark	6A	Chester	4A	Texas (TX)		Harris	2A
Ohio (OH)		Delaware	4A	Zone 3A Except		Hays	2A
Zone 5A Except		Montgomery	4A	Anderson	2A	Hidalgo	2A
Adams	4A	Philadelphia	4A	Angelina	2A	Hill	2A
Brown	4A	York	4A	Aransas	2A	Houston	2A
Clermont	4A	Rhode Island (RI)		Atascosa	2A	Jackson	2A
Gallia	4A	Zone 5A		Austin	2A	Jasper	2A
Hamilton	4A	South Carolina (SC)		Bandera	2B	Jefferson	2A
Lawrence	4A	Zone 3A		Bastrop	2A	Jim Hogg	2A
Pike	4A	South Dakota (SD)		Bee	2A	Jim Wells	2A
Scioto	4A	Zone 6A Except		Bell	2A	Karnes	2A
Washington	4A	Bennett	5A	Bexar	2A	Kenedy	2A
Oklahoma (OK)		Bon Homme	5A	Bosque	2A	Kinney	2B
Zone 3A Except		Charles Mix	5A	Brazoria	2A	Kleberg	2A
Beaver	4A	Clay	5A	Brazos	2A	La Salle	2B
Cimarron	4A	Douglas	5A	Brooks	2A	Lavaca	2A
Texas	4A	Gregory	5A	Burleson	2A	Lee	2A
		Hutchinson	5A	Caldwell	2A	Leon	2A

TABLE B-1 US Climate Zones (continued)

State		State		State		State	
County	Zone	County	Zone	County	Zone	County	Zone
(Texas cont.)		(Texas cont.)		(Texas cont.)		(Texas cont.)	
Liberty	2A	Brewster	3B	Mason	3B	Hansford	4B
Limestone	2A	Callahan	3B	McCulloch	3B	Hartley	4B
Live Oak	2A	Childress	3B	Menard	3B	Hockley	4B
Madison	2A	Coke	3B	Midland	3B	Hutchinson	4B
Matagorda	2A	Coleman	3B	Mitchell	3B	Lamb	4B
Maverick	2B	Concho	3B	Motley	3B	Lipscomb	4B
McLennan	2A	Cottle	3B	Nolan	3B	Moore	4B
McMullen	2A	Crane	3B	Pecos	3B	Ochiltree	4B
Medina	2B	Crockett	3B	Presidio	3B	Oldham	4B
Milam	2A	Crosby	3B	Reagan	3B	Parmer	4B
Montgomery	2A	Culberson	3B	Reeves	3B	Potter	4B
Newton	2A	Dawson	3B	Runnels	3B	Randall	4B
Nueces	2A	Dickens	3B	Schleicher	3B	Roberts	4B
Orange	2A	Ector	3B	Scurry	3B	Sherman	4B
Polk	2A	El Paso	3B	Shackelford	3B	Swisher	4B
Real	2B	Fisher	3B	Sterling	3B	Yoakum	4B
Refugio	2A	Foard	3B	Stonewall	3B	Utah (UT)	
Robertson	2A	Gaines	3B	Sutton	3B	Zone 5B Ex	cept
San Jacinto	2A	Garza	3B	Taylor	3B	Washington	3B
San Patricio	2A	Glasscock	3B	Terrell	3B	Box Elder	6B
Starr	2A	Hackell	3B	Terry	3B	Cache	6B
Travis	2A	Hall	3B	Throckmorton	3B	Carbon	6B
Trinity	2A	Hardeman	3B	Tom Green	3B	Daggett	6B
Tyler	2A	Haskell	3B	Upton	3B	Duchesne	6B
Uvalde	2B	Hemphill	3B	Ward	3B	Morgan	6B
Val Verde	2B	Howard	3B	Wheeler	3B	Rich	6B
Victoria	2A	Hudspeth	3B	Wilbarger	3B	Summit	6B
Walker	2A	Irion	3B	Winkler	3B	Uintah	6B
Waller	2A	Jeff Davis	3B	Armstrong	4B	Wasatch	6B
Washington	2A	Jones	3B	Bailey	4B	Vermont (VT)	
Webb	2B	Kendall	3B	Briscoe	4B	Zone 6A	Δ.
Wharton	2A	Kent	3B	Carson	4B	Virginia (VA)	
Willacy	2A	Kerr	3B	Castro	4B	Zone 4A	
Williamson	2A	King	3B	Cochran	4B	Washington (WA)	<u>-</u>
Wilson	2A	Knox	3B	Dallam	4B	Zone 5B Ex	cept
Zapata	2B	Lipscomb	3B	Deaf Smith	4B	Clallam	4C
Zavala	2B 2B	Loving	3B	Donley	4B	Clark	4C
Andrews	3B	Lubbock	3B	Floyd	4B	Cowlitz	4C
					4B	Grays Harbor	4C 4C
Baylor Borden	3B 3B	Lynn Martin	3B 3B	Gray Hale	4B 4B	Jefferson	4C 4C

TABLE B-1 US Climate Zones (continued)

		IABLE B-I	JS Clima
State		State	
County	Zone	County	Zone
(Washington cont.)		(West Virginia cont.)	
King	4C	Wayne	4A
Kitsap	4C	Wirt	4A
Lewis	4C	Wood	4A
Mason	4C	Wyoming	4A
Pacific	4C	Wisconsin (WI)	
Pierce	4C	Zone 6A Exce	pt
Skagit	4C	Ashland	7A
Snohomish	4C	Bayfield	7A
Thurston	4C	Burnett	7A
Wahkiakum	4C	Douglas	7A
Whatcom	4C	Florence	7A
Ferry	6B	Forest	7A
Okanogan	6B	Iron	7A
Pend Oreille	6B	Langlade	7A
Stevens	6B	Lincoln	7A
West Virginia (WV)		Oneida	7A
Zone 5A Except		Price	7A
Berkeley	4A	Sawyer	7A
Boone	4A	Taylor	7A
Braxton	4A	Vilas	7A
Cabell	4A	Washburn	7A
Calhoun	4A	Wyoming (WY)	
Clay	4A	Zone 6B Exce	ot
Gilmer	4A	Goshen	5B
Jackson	4A	Platte	5B
Jefferson	4A	Lincoln	7B
Kanawha	4A	Sublette	7B
Lincoln	4A	Teton	7B
Logan	4A	Puerto Rico (PR)	
Mason	4A	Zone 1A Exce	pt
McDowell	4A	Barranquitas 2 SSW	2B
Mercer	4A	Cayey 1 E	2B
Mingo	4A	Pacific Islands (PI)	
Monroe	4A	Zone 1A Exce	pt
Morgan	4A	Midway Sand Island	2B
Pleasants	4A	Virgin Islands (VI)	
Putnam	4A	Zone 1A	
Ritchie	4A		
Roane	4A		
Tyler	4A		

Table B-2 shows the climate zone numbers for a wide variety of Canadian locations. When the climate zone letter is required to determine compliance with this standard, refer to Table B-4 and the Major Climate Type Definitions in Section B2 to determine the letter (A, B, or C).

Table B-3 shows the climate zone numbers for a wide variety of other international locations besides Canada. When the climate zone letter is required to determine compliance with this standard, refer to Table B-4 and the Major Climate Type Definitions in Section B2 to determine the letter (A, B, or C).

For all international locations that are not listed either in Table B-2 or B-3, use Table B-4 and the Major Climate Type Definitions in Section B2 to determine both the climate zone letter and number.

Note: CDD50 and HDD65 values may be found in Normative Appendix D.

B2. MAJOR CLIMATE TYPE DEFINITIONS

Use the following information along with Table B-4 to determine climate zone numbers and letters for international climate zones.

Marine (C) definition—Locations meeting all four criteria:

- Mean temperature of coldest month between 27°F and 65°F.
- 2. Warmest month mean <72°F.
- 3. At least four months with mean temperatures over 50°F.
- 4. Dry season in summer. The month with the heaviest precipitation in the cold season has at least three times as much precipitation as the month with the least precipitation in the rest of the year. The cold season is October through March in the Northern Hemisphere and April through September in the Southern Hemisphere.

Dry (B) definition—Locations meeting the following criteria: not marine and

$$P_{in} < 0.44 \times (TF - 19.5)$$
,

where

P = annual precipitation, in.; and

 $T = \text{annual mean temperature, } ^{\circ}F.$

Moist (A) definition—Locations that are not marine and not dry.

TABLE B-2 Canadian Climatic Zones

Province		Province		Province		Province	
City	Zone	City	Zone	City	Zone	City	Zone
Alberta (AB)		(Manitoba cont.)		Ontario (ON)		(Québec cont.)	
Calgary International A	7	Winnipeg International A	7	Belleville	6	Granby	6
Edmonton International A	7	New Brunswick (NB)		Cornwall	6	Montreal Dorval International A	6
Grande Prairie A	7	Chatham A	7	Hamilton RBG	5	Québec City A	7
Jasper	7	Fredericton A	6	Kapuskasing A	7	Rimouski	7
Lethbridge A	6	Moncton A	6	Kenora A	7	Septles A	7
Medicine Hat A	6	Saint John A	6	Kingston A	6	Shawinigan	7
Red Deer A	7	Newfoundland (NF)		London A	6	Sherbrooke A	7
British Columbia (BC)		Corner Brook	6	North Bay A	7	St Jean de Cherbourg	7
Dawson Creek A	7	Gander International A	7	Oshawa WPCP	6	St Jerome	7
Ft Nelson A	8	Goose A	7	Ottawa International A	6	Thetford Mines	7
Kamloops	5	St John's A	6	Owen Sound MOE	6	Trois Rivieres	7
Nanaimo A	5	Stephenville A	6	Peterborough	6	Val d'Or A	7
New Westminster BC Pen	5	Northwest Territories (N	W)	St Catharines	5	Valleyfield	6
Penticton A	5	Ft Smith A	8	Sudbury A	7	Saskatchewan (SK)	
Prince George	7	Inuvik A	8	Thunder Bay A	7	Estevan A	7
Prince Rupert A	6	Yellowknife A	8	Timmins A	7	Moose Jaw A	7
Vancouver International A	5	Nova Scotia (NS)		Toronto Downsview A	6	North Battleford A	7
Victoria Gonzales Hts	5	Halifax International A	6	Windsor A	5	Prince Albert A	7
Manitoba (MB)		Kentville CDA	6	Prince Edward Island (PE	2)	Regina A	7
Brandon CDA	7	Sydney A	6	Charlottetown A	6	Saskatoon A	7
Churchill A	8	Truro	6	Summerside A	6	Swift Current A	7
Dauphin A	7	Yarmouth A	6	Québec (PQ)		Yorkton A	7
Flin Flon	7	Nunavut		Bagotville A	7	Yukon Territory (YT)	
Portage La Prairie A	7	Resolute A	8	Drummondville	6	Whitehorse A	8
The Pas A	7						

TABLE B-3 International Climate Zones

Country		Country		Country		Country	
City (Province or Region)	Zone	City (Province or Region)	Zone	City (Province or Region)	Zone	City (Province or Region)	Zone
Argentina		Finland		Japan		(Russia cont.)	
Buenos Aires/Ezeiza	3	Helsinki/Seutula	7	Fukaura	5	RostovNaDonu	5
Cordoba	3	France		Sapporo	5	Vladivostok	6
Tucuman/Pozo	2	Lyon/Satolas	4	Tokyo	3	Volgograd	6
Australia		Marseille	4	Jordan		Saudi Arabia	
Adelaide (SA)	4	Nantes	4	Amman	3	Dhahran	1
Alice Springs (NT)	2	Nice	4	Kenya		Riyadh	1
Brisbane (AL)	2	Paris/Le Bourget	4	Nairobi Airport	3	Senegal	-
Darwin Airport (NT)	1	Strasbourg	5	Korea		Dakar/Yoff	1
Perth/Guildford (WA)	3	Germany		Pyonggang	5	Singapore	-
Sydney/KSmith (NSW)	3	Berlin/Schoenfeld	5	Seoul	4	Singapore/Changi	1
Azores (Terceira)	3	Hamburg	5	Malaysia	-	South Africa	1
` ′	3	Hannover	5	*	1	Cape Town/D F Malan	4
Lajes Bahamas	3			Kuala Lumpur		*	•
	1	Mannheim	5	Penang/Bayan Lepas	1	Johannesburg	4
Nassau	1	Greece	2	Mexico	2	Pretoria	3
Belgium	_	Souda (Crete)	3	Mexico City (Distrito Federal)	3	Spain	,
Brussels Airport	5	Thessalonika/Mikra	4	Guadalajara (Jalisco)	1	Barcelona	4
Bermuda		Greenland		Monterrey (Nuevo Laredo)	3	Madrid	4
St. Georges/Kindley	2	Narssarssuaq	7	Tampico (Tamaulipas)	1	Valencia/Manises	3
Bolivia		Hungary		Veracruz (Veracruz)	4	Sweden	
La Paz/El Alto	5	Budapest/Lorinc	5	Merida (Yucatan)	1	Stockholm/Arlanda	6
Brazil		Iceland		Netherlands		Switzerland	
Belem	1	Reykjavik	7	Amsterdam/Schiphol	5	Zurich	5
Brasilia	2	India		New Zealand		Syria	
Fortaleza	1	Ahmedabad	1	Auckland Airport	4	Damascus Airport	3
Porto Alegre	2	Bangalore	1	Christchurch	4	Taiwan	
Recife/Curado	1	Bombay/Santa Cruz	1	Wellington	4	Tainan	1
Rio de Janeiro	1	Calcutta/Dum Dum	1	Norway		Taipei	2
Salvador/Ondina	1	Madras	1	Bergen/Florida	5	Tanzania	
Sao Paulo	2	Nagpur Sonegaon	1	Oslo/Fornebu	6	Dar es Salaam	1
Bulgaria		New Delhi/Safdarjung	1	Pakistan		Thailand	
Sofia	5	Indonesia		Karachi Airport	1	Bangkok	1
Chile		Djakarta/Halimperda (Java)	1	Papua New Guinea		Tunisia	
Concepcion	4	Kupang Penfui (Sunda Island)	1	Port Moresby	1	Tunis/El Aouina	3
Punta Arenas/Chabunco	6	Makassar (Celebes)	1	Paraguay		Turkey	
Santiago/Pedahuel	4	Medan (Sumatra)	1	Asuncion/Stroessner	1	Adana	3
China		Palembang (Sumatra)	1	Peru		Ankara/Etimesgut	4
Shanghai/Hongqiao	3	Surabaja Perak (Java)	1	LimaCallao/Chavez	2	Istanbul/Yesilkoy	4
Cuba		Ireland		San Juan de Marcona	2	United Kingdom	
Guantanamo Bay NAS (Ote.)	1	Dublin Airport	5	Talara	2	Birmingham (England)	5
Cyprus		Shannon Airport	4	Philippines		Edinburgh (Scotland)	5
Akrotiri	3	Israel		Manila Airport (Luzon)	1	Glasgow Apt (Scotland)	5
Larnaca	3	Jerusalem	3	Poland		London/Heathrow (England)	4
Paphos	3	Tel Aviv Port	2	Krakow/Balice	5	Uruguay	
Czech Republic		Italy		Romania		Montevideo/Carrasco	3
Prague/Libus	5	Milano/Linate	4	Bucuresti/Bancasa	5	Venezuela	
Dominican Republic		Napoli/Capodichino	4	Russia		Caracas/Maiquetia	1
Santo Domingo	1	Roma/Fiumicion	4	Kaliningrad (East Prussia)	5	Vietnam	1
	1	Jamaica	4	Krasnoiarsk	3 7	Hanoi/Gialam	1
Egypt	2		1				•
Cairo	2	Kingston/Manley	1	Moscow Observatory	6	Saigon (Ho Chi Minh)	1
Luxor	1	Montego Bay/Sangster	1	Petropavlovsk	7		

TABLE B-4 International Climate Zone Definitions

Zone Number Name		Thermal Criteria		
1	Very Hot–Humid (1A), Dry (1B)	9000 < CDD50°F		
2	Hot-Humid (2A), Dry (2B)	$6300 < CDD50^{\circ}F \le 9000$		
3A and 3B	Warm-Humid (3A), Dry (3B)	$4500 < \text{CDD}50^{\circ}\text{F} \le 6300$		
3C	Warm-Marine	CDD50°F \leq 4500 and HDD65°F \leq 3600		
4A and 4B	Mixed-Humid (4A), Dry (4B)	CDD50°F \leq 4500 and 3600 $<$ HDD65°F \leq 5400		
4C	Mixed-Marine	$3600 < HDD65^{\circ}F \le 5400$		
5A, 5B and 5C	Cool-Humid (5A), Dry (5B), Marine (5C)	$5400 < HDD65^{\circ}F \le 7200$		
6A and 6B	Cold-Humid (6A), Dry (6B)	$7200 < HDD65^{\circ}F \le 9000$		
7	Very Cold	$9000 < HDD65^{\circ}F \le 12600$		
8	Subarctic	12600 < HDD65°F		

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX C METHODOLOGY FOR BUILDING ENVELOPE TRADE-OFF OPTION IN SUBSECTION 5.6

C1. MINIMUM INFORMATION

The following minimum information shall be specified for the proposed design.

- **C1.1** At the Building Level. The floor area, broken down by *space-conditioning categories*, shall be specified.
- **C1.2** At the Exterior Surface Level. The classification, gross area, orientation, *U-factor*, and exterior conditions shall be specified. For *mass walls* only: *HC* and insulation position. Each surface is associated with a *space-conditioning category* as defined in Section C1.1.
- **C1.3 For Fenestration.** The classification, area, *U-factor*, *SHGC*, VLT, overhang *PF* for *vertical fenestration*, and width, depth, and height for *skylight wells* shall be specified. (See Figure C1.3 for definition of width, depth, and height for *skylight wells*.) Each *fenestration* element is associated with a surface (defined in Section C1.2) and has the orientation of that surface.
- **C1.4 For Opaque Doors.** The classification, area, *U-factor*, *HC*, and insulation position shall be specified. Each *opaque door* is associated with a surface (defined in Section C1.2) and has the orientation of that surface.
- **C1.5 For Below-Grade Walls.** The area, average depth to the bottom of the wall, and *C-factor* shall be specified. Each *below-grade wall* is associated with a *space-conditioning category* as defined in C1.1.
- **C1.6** For Slab-On-Grade Floor. The perimeter length and F-factor shall be specified. Each slab-on-grade floor is associated with a space-conditioning category as defined in Section C1.1.

C2. OUTPUT REQUIREMENTS

Output reports shall contain the following information.

C2.1 Tables summarizing the minimum information described in Section C1.

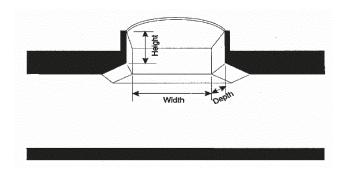


Figure C1.3 Skylight well dimensions.

C2.2 The *envelope performance factor* differential broken down by envelope component. The differential is the difference between the *envelope performance factor* of the proposed building and the *envelope performance factor* of the base envelope design. Envelope components include the *opaque roof, skylights, opaque above-grade walls* including *vertical fenestration* and *opaque doors, below-grade walls, floors*, and *slab-on-grade floors*.

C3. BASE ENVELOPE DESIGN SPECIFICATION

- **C3.1** The base envelope design shall have the same building floor area, building envelope floor area, slab-on-grade floor perimeter, below-grade floor area, gross wall area, opaque door area, and gross roof area as the proposed design. The distribution of these areas among space-conditioning categories shall be the same as the proposed design.
- C3.2 The *U-factor* of each *opaque* element of the base envelope design shall be equal to the criteria from Tables 5.5-1 through 5.5-8 for the appropriate climate for each construction classification. *The HC* of *mass wall* elements in the base envelope design shall be identical to the proposed design. *Mass walls* in the base envelope design shall have interior insulation, when required.
- C3.3 The vertical fenestration area of each space-conditioning category in the base envelope design shall be the same as the proposed building or 40% of the gross wall area, whichever is less. The distribution of vertical fenestration among space-conditioning categories and surface orientations shall be the same as the proposed design. If the vertical fenestration area of any space-conditioning category is greater than 40% of the gross wall area of that space-conditioning category, then the area of each fenestration element shall be reduced in the base envelope design by the same percentage so that the total vertical fenestration area is exactly equal to 40% of the gross wall area.
- **C3.4** The *skylight area* of each space category in the base envelope design shall be the same as the proposed building or 5% of the *gross roof area*, whichever is less. This distribution of *skylights* among *space-conditioning categories* shall be the same as the proposed design. If the *skylight area* of any space category is greater than 5% of the *gross roof area* of that *space-conditioning category*, then the area of each *skylight* shall be reduced in the base envelope design by the same percentage so that the total *skylight area* is exactly equal to 5% of the *gross roof area*.
- C3.5 The *U-factor* for *fenestration* in the base envelope design shall be equal to the criteria from Tables 5.5-1 through 5.5-8 for the appropriate climate. The *SHGC* for *fenestration* in the base envelope design shall be equal to the criteria from Tables 5.5-1 through 5.5-8. For portions of those tables where there are no requirements, the *SHGC* shall be equal to 0.46 for all *vertical fenestration*, 0.77 for plastic *skylights* on a curb, and 0.72 for all other *skylights* with a curb and without. The VLT for *fenestration* in the base envelope design shall be the VLT factor from Table C3.5 times the *SHGC* criteria as determined in this subsection.

TABLE C3.5 VLT Factor for the Base Envelope Design

	Climate Bin	Vertical Fenestration	Glass Skylights	Plastic Skylights	
٠	1(A, B)	1.00	1.27	1.20	_
	2(A, B)	1.00	1.27	1.20	
	3(C)	1.00	1.27	1.20	
	3(A, B)	1.27	1.27	1.20	
	4(A, B, C)	1.27	1.27	1.20	
	5(A, B, C)	1.27	1.27	1.20	
	6(A, B)	1.27	1.27	1.20	
	7	1.00	1.00	1.20	
	8	1.00	1.00	1.20	

C4. ZONING AND BUILDING GEOMETRY

No information about thermal zones needs to be entered to perform the calculations, but when the calculations are performed the building shall be divided into thermal zones according to the following procedure.

- **C4.1** Determine the ratio (*Rc*) of the *gross floor area* to the *gross wall area* for each *space-conditioning category*. The index "c" refers to the *space-conditioning category*, either *non-residential conditioned*, *residential conditioned*, or *semiheated*.
- **C4.2** Create a perimeter zone for each unique combination of *space-conditioning category* and *wall* orientation. The *floor area* of each perimeter zone shall be the *gross wall area* of the zone times Rc or 1.25, whichever is smaller.
- **C4.3** For *space-conditioning categories* where *Rc* is greater than 1.25, interior zones shall be created and used in the trade-off procedure. The *floor area* of the interior zone shall be the total floor area for the *space-conditioning category* less the floor area of the perimeter zones created in Section C4.2 for that *space-conditioning category*.
- **C4.4** Roof area, floor area, below-grade wall area, and slab-on-grade floor perimeter associated with each space-conditioning category shall be prorated among the zones according to floor area.
- **C4.5** *Skylights* shall be assigned to the interior zone of the *space-conditioning category*. If the *skylight area* is larger than the *roof area* of the interior zone, then the *skylight area* in the interior zone shall be equal to the *roof area* in the interior zone and the remaining *skylight area* shall be prorated among the perimeter zones based on *floor area*.

C5. MODELING ASSUMPTIONS

The following are modeling assumptions for the purposes of this appendix only and are not requirements for building operation.

C5.1 The residential conditioned and nonresidential conditioned space-conditioning categories shall be modeled with both heating and cooling systems for both the base envelope

design and the proposed design. The thermostat setpoints for *residential* and *nonresidential spaces* shall be 70°F for heating and 75°F for cooling, with night setback temperatures of 55°F for heating and 99°F for cooling.

- **C5.2** The *semiheated* space categories shall be modeled with heating-only systems for both the base envelope design and the proposed design. The thermostat setpoint shall be 50°F for all hours.
- **C5.3** Both the base envelope design and the proposed design shall be modeled with the same heating, ventilating, and air-conditioning (HVAC) systems. The system shall consist of a packaged rooftop system serving each thermal zone. Cooling shall be provided by a direct expansion air conditioner (EER = 9.5, $COP_{cooling} = 2.78$). Heating shall be provided by a gas furnace (AFUE = 0.78).
- C5.4 The electrical systems shall be the same for both the base envelope design and the proposed design. The *LPD* shall be 1.20 W/ft² for *nonresidential conditioned spaces*, 1.00 W/ft² for *residential conditioned spaces*, and 0.50 W/ft² for *semiheated spaces*. The equipment power density shall be 0.75 W/ft² for *nonresidential conditioned spaces*, 0.25 W/ft² for *residential conditioned spaces*, and 0.25 W/ft² for *semi-heated spaces*. Continuous daylight dimming shall be assumed in all spaces and be activated at 50 fc for *nonresidential conditioned spaces* and *residential conditioned spaces* and 30 fc for *semiheated spaces*.
- **C5.5** Surface reflectances for daylighting calculations shall be 80% for ceilings, 50% for walls, and 20% for floors.
- **C5.6** *Envelope performance factor (EPF)* is defined in the following equation.

Envelope Performance Factor =
$$\frac{\text{MBtu} \times 6600 + \text{kWh} \times 80}{\text{Total Building Floor Area}}$$

- **C5.7** The *U-factor* entered for surfaces adjacent to crawl-spaces, attics, and parking garages with mechanical or natural ventilation shall be adjusted by adding R-2 to the *thermal resistance* to account for the buffering effect.
- **C5.8** Heat transfer for *below-grade walls* shall be based on the temperature difference between indoor and outdoor temperature conditions and a heat transfer path at the average wall depth below grade.

C6. EQUATIONS FOR ENVELOPE TRADE-OFF CALCULATIONS

The procedure defined in this subsection shall be used in all building envelope trade-off calculations.

- **C6.1 Inputs.** Building descriptions shall be converted to equation variables using Table C6.1.
- **C6.2 Envelope Performance Factor.** The *EPF* of a building shall be calculated using Equation C-2.

$$EPF = FAF \times [\Sigma HVAC_{surface} + \Sigma Lighting_{zone}] \qquad (C-2)$$

where

FAF = floor area factor for the entire building

TABLE C6.1 Input Variables

Variable	Description	I-P Units
Area _{surface}	Area of surface	ft ²
Areazone	Gross floor area of zone as defined in Section C.5	ft^2
C-factor	C-factor for below-grade walls	Btu/h·ft ² ·°F
CDD50	CDDs	Base 50°F·day
CDD65	CDDs	Base 65°F·day
CDH80	Cooling degree-hours	Base 80°F·hour
CFA	Conditioned floor area	ft^2
Depth	Depth of bottom of below-grade wall	ft
DI	Artificial lighting design illuminance from Section C.5.4	footcandles
DR	Daily range (average outdoor maximum-minimum in hottest month)	°F
EPD	Miscellaneous equipment power density from Section C.5.4	W/ft^2
F-factor	F-factor for slab-on-grade floors	Btu/h·ft·°F
FAF	Building floor area factor	$1000/\text{CFA}, \text{ ft}^2$
HC	Wall heat capacity	Btu/ft ² .°F
HDD50	HDDs	Base 50°F·day
HDD65	HDDs	Base 65°F·day
Length	Length of slab-on-grade floor perimeter	ft
LPD	LPD from Section C.5.4	W/ft^2
R-Value	Effective R-value of soil for below-grade walls	h·ft ² ·°F/Btu
U-factor	U-factor	Btu/h·ft²·∘F
VS	Annual average daily incident solar radiation on vertical surface	Btu/ft ² ·day

 Σ HVAC_{surface} = sum of HVAC for each surface calculated using Equation C-3

 Σ Lighting_{zone} = sum of lighting for each zone calculated using Equation C-4

C6.3 HVAC. The HVAC term for each *exterior* or *semi-exterior* surface in the building shall be calculated using Equation C-3.

$$HVAC_{surface} = COOL + HEAT$$
 (C-3)

where

COOL = cooling factor for the surface calculated according to the appropriate equation in C-14, C-19, or C-22

HEAT = heating factor for the surface calculated according to the appropriate equation in C-16, C-18, or C-23

C6.4 Lighting. The lighting term for each zone in the building as defined in Section C4 shall be calculated using Equation C-4.

$$Lighting_{zone} = LPDadj_{zone} \times AREA_{zone} \times 216 \qquad (C-4)$$

where

*LPD*adj_{zone} = lighting power density for the zone adjusted for daylighting potential using Equation C-9

C6.5 Solar and Visible Aperture

C6.5.1 Solar and Visible Aperture of Vertical Fenestration. The visible aperture (VA), solar aperture for cooling (SA_c) , and solar aperture for heating (SA_h) of each *vertical*

fenestration shall be calculated using Equations C-5, C-6, and C-7.

$$VA = Area_{vf} \times VLT_{vf} \times (1 + PCC1 \times PF + PCC2 \times PF^{2})$$
(C-5)

$$SA_c = Area_{vf} \times 1.163 \times SHGC \times (1 - PCC1 \times PF + PCC2 \times PF^2)$$
(C-6)

$$SA_h = Area_{vf} \times 1.163 \times SHGC \times (1 + PCH1 \times PF + PCH2 \times PF^2)$$
(C-7)

where

PF

Area_{vf} = glazing area of the vertical fenestration

SHGC = the solar heat gain coefficient of the vertical fenestration assembly

VLT_{vf} = the visible light transmittance of the vertical fenestration assembly

= the *projection factor* for the overhang shade on the *vertical fenestration*

PCH1, PCH2, PCC1, and PCC2 = overhang projection coefficients for the vertical fenestration orientation from Table

TABLE C6.5.1 Overhang Projection Coefficients

Orientation	PCC1	PCC2	PCH1	PCH2
North	-0.5	0.22	0	0
East, South, West	-0.97	0.38	0	0

C6.5.2 Visible Aperture of Skylights. The VA of a *skylight* shall be calculated using Equation C-8.

$$VA = Area_{sky} \times VLT_{sky} \times 10^{(-0.250 \times (5 \times D \times (W + L) / (W \times L)))}$$

where

Area_{skv} = *fenestration area* of the *skylight* assembly

 VLT_{sky} = the visible light transmittance of the *skyligh*t assembly

D = average depth of skylight well from *fenestration* to ceiling

W = width of skylight well L = length of skylight well

C6.6 Adjusted Lighting Power (*LPD*adj). The adjusted lighting power for each zone shall be calculated using Equation C-9.

$$LPDadj_{zone} = LPD \times (1 - Kd_{zone})$$
 (C-9)

where Kd_{zone} = daylight potential fraction calculated using Equation C-10.

If a zone has both *skylights* and *vertical fenestration*, the larger of the Kd calculated independently for each shall be used to calculate *LPD*adj.

$$Kd_{zone} = \left(\Phi 1 + \left(\frac{\Phi 2 \times DI \times VA}{Area_{fen}}\right)\right) \times (1 - e^{((\Phi 3 + \Phi 4 \times DI) \times VA)/Area_{surface}})$$
(C10)

where

Area_{fen} = total *fenestration area* of the *vertical fenestration* or *skylight* assemblies in the zone

VA = total visible aperture of the *vertical fenestration* or *skylights* in the zone, as calculated in Equation C-5

Area_{surface} = gross wall area of the zone for vertical fenestration or gross roof area of the zone for skylights

and the coefficients 1 through 4 are defined in Table C6.6.

C6.7 Delta Load Factors for Mass Walls in the Exterior Building Envelope. Adjustments to cooling and heating loads for use in Equations C-14 and C-16 due to the mass properties of each *mass wall* component shall be calculated using Equations C-11 and C-12.

$$CMC = 1.43 \times \text{Area}_{mw} \times [1 - e^{-CP_1(HC - 1)}]$$

$$\times \left[CP_2 + CP_3U - \left(\frac{CP_4}{1 + (CP_5 + CP_6U)e^{-(CP_7 + CP_8U^2)(HC - 1)}} \right) \right]$$
(C-11)

TABLE C6.6 Coefficients for Calculating Kd

Coefficient	Skylight	Vertical Fenestration
Ф1	0.589	0.737
Ф2	5.18E-07	-3.17E-04
Ф3	-220	-24.71
Ф4	2.29	0.234

where

 CP_1

CMC = cooling delta load factor

Area $_{mw}$ = net opaque area of this mass wall

 $A_c = \text{CDH}80/10000 + 2$

B = DR/10 + 1

HC = wall heat capacity

DR = average daily temperature range for warmest

month

 $CP_2 = C_{15}/B^3 + C_{16}/(A_C^2B^2) + C_{17}$

 CP_3 = $C_1/A_C^3 + C_2B^3 + C_2B^3 + C_3/(A_C^2 \sqrt{B}) + C_4$

 $CP_4 = C_{12}(A_C^2B^2) + C_{13}/B^3 + C_{14}$

U = area average of *U-factors* of *mass walls* in the zone

 $CP_5 = C_{18}$

 $CP_6 = C_6 \sqrt{B} LN(A_C) + C_7$

LN = natural logarithm

 CP_7 = $C_{19}/(A_C^2B^2) + C_{20}/(A_CB) + C_{21}A_C^2/\sqrt{B} + C_{22}$ CP_8 = $C_8/(A_C^2B^2) + C_9/(A_CB) + C_{10}A_C^2/\sqrt{B} + C_{11}$

The coefficients C_1 through C_{22} depend on insulation position in the wall and are taken from Table C6.7A.

$$HMC = 1.43 \times \text{Area}_{mw} \times [1 - e^{-HP_1(HC - 1)}]$$

$$\times \left[HP_2 + HP_3U - \left(\frac{HP_4}{1 + (HP_5 + HP_6U)e^{-(HP_7 + HP_8U^2)(HC - 1)}} \right) \right]$$
(C-12)

where

HMC = heating delta load factor

HC = wall heat capacity

Area $_{mw}$ = net opaque area of this mass wall

 $HP_1 = H_6$

 $A_H = \text{HDD65/100} + 2$

 $HP_2 = H_{14}LN(A_H) + H_{15}$

LN = natural logarithm

 $HP_3 = H_1A_H^3 + H_2A_H^2 + H_3/\sqrt{A} + H_4\sqrt{A} + H_5$

U = area average of U-factors of mass walls in the zone

 $HP_4 = H_{11}A_H^2 + H_{12}/A_H^2 + H_{13}$

 $HP_5 = H_{16}$

 $HP_6 = H_7A_H + H_8$

 $HP_7 = H_{17}/A_H^3 + H_{18}$

 $HP_{8} = H_{0}/A_{H}^{3} + H_{10}$

The coefficients $\rm H_1$ through $\rm H_{18}$ depend on the position of the insulation in the wall and are taken from Table C6.7B. If the

TABLE C6.7A **Cooling Delta Load Coefficients**

- IABLE (7017A 00011	ng Bona Load	Coomoionto	171522	on B Houting	g Bona Load (oomoiomo
	Insula	tion Position			Insulation	on Position	
Variable	Exterior	Integral	Interior	Variable	Exterior	Integral	Interior
c ₁	220.7245	139.1057	181.6168	$\overline{\mathrm{H}_{1}}$	0.0000	0.0000	0.0000
c_2	-0.0566	-0.0340	-0.0552	H_2	-0.0015	-0.0018	-0.0015
c_3	-118.8354	-10.3267	-34.1590	H_3	13.3886	15.1161	19.8314
c_4	-13.6744	-20.8674	-25.5919	H_4	1.9332	2.1056	1.4579
c_5	0.2364	0.2839	0.0810	H_5	-11.8967	-13.3053	-15.5620
c_6	0.9596	0.3059	1.4190	H_6	0.4643	0.1840	0.0719
^C 7	-0.2550	0.0226	0.4324	H_7	0.0094	0.0255	0.0264
С8	-905.6780	-307.9438	-1882.9268	H_8	-0.1000	0.0459	0.7754
c ₉	425.1919	80.2096	443.1958	H_9	-1223.3962	-622.0801	0.2008
^C 10	-2.5106	0.0500	0.4302	H_{10}	-0.9454	-0.5192	-0.6379
c ₁₁	-43.3880	-5.9895	-28.2851	H_{11}	-0.0001	-0.0001	0.0000
^C 12	-259.7234	-11.3961	-63.5623	H_{12}	3.8585	4.1379	2.4243
^C 13	-33.9755	0.3669	20.8447	H_{13}	7.5829	6.2380	7.9804
c ₁₄	20.4882	30.2535	9.8175	H_{14}	-0.7774	-0.7711	-0.1699
c ₁₅	-26.2092	8.8337	24.4598	H_{15}	9.0147	7.7229	8.5854
^C 16	-241.1734	-22.2546	-70.3375	H_{16}	0.2007	0.2083	-0.0386
^C 17	18.8978	29.3297	9.8843	H_{17}	206.6382	105.9849	3.1397
c ₁₈	-0.3538	-0.0239	-0.1146	H_{18}	0.2573	0.1983	0.1863
c ₁₉	156.3056	63.3228	326.3447				
^C 20	-74.0990	-16.3347	-77.6355			al Gain. The et	
^c 21	0.4454	-0.0111	-0.0748	gain to zone (3 shall be calcul	lated using Equa	ation C-13.

U-factor of mass wall is greater than 0.4 Btu/(h·ft².°F), then the *U-factor* shall be set to 0.4 Btu/($h \cdot ft^2 \cdot {}^\circ F$). If the *U-factor* of the mass wall is less than 0.05 Btu/(h·ft².°F), then the *U-Factor* shall be set to 0.05 Btu/($h \cdot ft^2 \cdot {}^{\circ}F$). If the wall HC of the mass wall is greater than 20 Btu/(ft². $^{\circ}$ F), then HC = 20 Btu/(ft². $^{\circ}$ F) shall be used.

1.2956

7.4967

C6.8 Walls and Vertical Fenestration in the Exterior **Building Envelope.** Equations C-14 and C-16 shall be used to calculate COOL and HEAT for exterior walls and vertical fenestration in the exterior building envelope except walls next to crawlspaces, attics, and parking garages with natural or mechanical ventilation. Walls next to crawlspaces, attics, and parking garages with natural or mechanical ventilation shall use the equations in Section C6.10 and they shall not be included in calculations in Section C6.8. Zones shall be constructed according to Section C4 and the HEAT and COOL for the combination of all exterior walls and vertical fenestration in the zone shall be calculated using Equations C-14 and C-16, which include interactive effects. For a zone having a cardinal orientation (north, east, south, or west), Equations C-14 and C-15 shall be applied directly. For zones with northeast, northwest, southwest, and southeast orientations, EC shall be determined by finding the average of the values for the two closest cardinal orientations; for instance, COOL for a wall facing northeast is calculated by taking the average of COOL for a north-facing wall and COOL for an east-facing wall.

$$G = EPD + LPDadj_{zone}$$
 (C-13)

where

5.2041

 $LPDadj_{zone} = lighting power density$ adjusted daylighting, from Equation C-9

C6.8.2 Cooling Factor. The cooling factor for the surfaces in the zone shall be calculated using Equation C-14.

$$COOL = 0.005447 \times [CLU + CLUO + CLXUO + CLM + CLG + CLS + CLC]$$
 (C-14)

where

CLU = Area_{opaque} ×
$$U_{ow}$$
 × [CU1 × CDH80 + CU2 × CDH80²
+ CU3 × (VS × CDH80)² + CU4 x DR]

$$\begin{split} \text{CLUO} &= \text{Area}_{\textit{grosswall}} \times \text{UO} \times [\text{CUO1} \times \text{EA}_{\text{C}} \times \text{VS} \times \text{CDD50} \\ &+ \text{CUO2} \times \text{G} + \text{CUO3} \times \text{G}^2 \times \text{EA}_{\text{C}}^2 \times \text{VS} \times \text{CDD50} + \text{CUO4} \\ &\times \text{G}^2 \times \text{EA}_{\text{C}}^2 \times \text{VS} \times \text{CDD65}] \end{split}$$

$$\begin{split} & CLXUO = Area_{grosswall} / \ UO \times [CXUO1 \times EA_{C} \times VS \\ \times & CDD50 + CXUO2 \times EA_{C} \times (VS \times CDD50)^{2} + CXUO3 \\ \times & G \times CDD50 + CXUO4 \times G^{2} \times EA_{C}^{2} \times VS \times CDD50 \\ & + CXUO5 \times G^{2} \times CDD65] \end{split}$$

$$\begin{split} & CLM = Area_{opaque} \times SCMC \times [CM1 + CM2 \times EA_C \times VS \\ & \times CDD50 + CM3 \times EA_C \times VS \times CDD65 + CM4 \times EA_C^2 \times VS \\ & \times CDD50 + CM5 \times G^2 \times CDD65 + CM6 \times G \times CDD50 + CM7 \\ & \times G \times CDD65 + CM8 \times G \times EA_C \times VS \times CDD50] \end{split}$$

 c_{22}

$$\begin{array}{l} {\rm CLG} &= {\rm Area}_{grosswall} \times \{{\rm G} \times [{\rm CG1} + {\rm CG2} \times {\rm CDD50} + {\rm CG3} \\ \times {\rm EA}_{\rm C} \times ({\rm VS} \times {\rm CDD50})^2 + {\rm CG4} \times {\rm EA}_{\rm C}^2 \times {\rm VS} \times {\rm CDD50} + {\rm CG5} \\ \times {\rm CDD65} + {\rm CG6} \times {\rm CDD50}^3 + {\rm CG7} \times {\rm CDD65}^3] + {\rm G}^2 \times [{\rm CG8} \times {\rm EA}_{\rm C} \times {\rm VS} \times {\rm CDD50} + {\rm CG9} \times {\rm EA}_{\rm C}^2 \times {\rm VS} \times {\rm CDD50}] \} \\ {\rm CLS} &= {\rm Area}_{grosswall} \times \{{\rm EA}_{\rm C} \times [{\rm CS1} + {\rm CS2} \times {\rm VS} \times {\rm CDD50} \\ + {\rm CS3} \times ({\rm VS} \times {\rm CDD50})^2 + {\rm CS4} \times {\rm VS} \times {\rm CDD65} + {\rm CS5} \\ \times ({\rm VS} \times {\rm CDD65})^2] + {\rm EA}_{\rm C}^2 \times [{\rm CS6} + {\rm CS7} \times ({\rm VS} \times {\rm CDD65})^2] \} \\ {\rm CLC} &= {\rm Area}_{grosswall} \times [{\rm CC1} \times {\rm CDD50} + {\rm CC2} \times {\rm CDD50}^2 \\ + {\rm CC3} \times {\rm CDH80} + {\rm CC4} \times {\rm CDH80}^2 + {\rm CC5} \times {\rm CDD65} + {\rm CC6} \\ \times ({\rm VS} \times {\rm CDD50})^2 + {\rm CC7} \times {\rm VS} \times {\rm CDD50} + {\rm CC8} \\ \times ({\rm VS} \times {\rm CDD50})^2 + {\rm CC9} \times ({\rm VS} \times {\rm CDH80})^2 + {\rm CC10} \times {\rm VS} \\ + {\rm CC11} \times {\rm DR} + {\rm CC12} \times {\rm DR}^2 + {\rm CC13}] \end{array}$$

where

Area_{grosswall} = total gross area of all walls and vertical fenestration in the zone, including opaque and fenestration areas

 $Area_{opaque}$ = total opaque area of all walls in the zone U_{ow} = area average of *U-factors* of opaque walls

(including those of mass construction) in the zone

VS = annual average daily incident solar energy on surface

DR = average daily temperature range for the warmest month

UO = area average of *U-factor* of *opaque walls* and *vertical fenestration* in the zone

SCMC = sum of the CMC from Equation C-11 for each *mass wall* in the zone

G = effective internal gain to space, from Equation C-13

EA_C = effective solar aperture fraction for zone calculated using Equation C-15

$$EA_C = \frac{\sum SA_C}{\text{Area}_{grosswall}}$$
 (C-15)

where

 ΣSA_c = the sum of SA_c from Equation C-6.6 for all *vertical* fenestration in the zone.

The coefficients used in the above equations depend on the *orientation* of the surface and shall be found in Table C6.8.2.

C6.8.3 Heating Factor. The heating factor for the surfaces in the zone shall be calculated using Equation C-16.

$$\begin{aligned} \text{HEAT} &= 0.007669 \times [\text{HLU} + \text{HLUO} + \text{HLXUO} + \text{HLM} \\ &+ \text{HLG} + \text{HLS} + \text{HLC}] \end{aligned} \tag{C-16}$$

where

$$HLU = Area_{opaque} \times U_{ow} \times [HU1 \times HDD50 + HU2 \times (VS \times HDD65)^{2}]$$

$$\begin{aligned} \text{HLUO} &= \text{Area}_{\textit{grosswall}} \times \text{UO} \times [\text{HUO1} \times \text{HDD50} + \text{HUO2} \\ &\times \text{HDD65} + \text{HUO3} \times \text{EA}_{\text{H}} \times \text{VS} \times \text{HDD65}] \end{aligned}$$

$$\begin{aligned} \text{HLXUO} &= \text{Area}_{grosswall} \times \{ (1/\text{UO}) \times [\text{HXUO1} \times \text{EA}_{\text{H}} \\ &\times (\text{VS} \times \text{HDD50})^2 + \text{HXUO2} \times \text{EA}_{\text{H}} \times (\text{VS} \times \text{HDD65})^2] \\ &+ (1/\text{UO}^2) \times [\text{HXUO3} \times \text{EA}_{\text{H}}^2 \times \text{VS} \times \text{HDD65}] \} \end{aligned}$$

$$\begin{split} & HLM = Area_{opaque} \times SHMC \times [HM1 + HM2 \times G \times UO \\ & \times HDD65 + HM3 \times G^2 \times EA_H^2 \times VS \times HDD50 + HM4 \times UO \\ & \times EA_H \times VS \times HDD65 + HM5 \times UO \times HDD50 + HM6 \times EA_H \\ & \times (VS \times HDD65)^2 + HM7 \times EA_H^2 \times VS \times HDD65/UO] \end{split}$$

$$\begin{split} HLG &= Area_{grosswall} \times \{G \times [HG1 \times HDD65 + HG2 \times UO \\ \times HDD65 + HG3 \times EA_{H} \times VS \times HDD65 + HG4 \times EA_{H}^{2} \\ &\times VS \times HDD50] \times G^{2} \times [HG5 \times HDD65 + HG6 \\ &\times EA_{H}^{2} \times VS \times HDD65] \} \end{split}$$

$$\begin{split} HLS &= Area_{\textit{grosswall}} \times \{EA_{H} \times [HS1 \times VS \times HDD65 + HS2 \\ &\times (VS \times HDD50)^{2}] + EA_{H}^{2} \times [HS3 \times VS \times HDD50 \\ &+ HS4 \times VS \times HDD65] \} \end{split}$$

$$HLC = Area_{grosswall} \times [HC1 + HC2 \times HDD65 + HC3 \times HDD65^{2} + HC4 \times VS^{2} + HC5 \times VS \times HDD50 + HC6 \times VS \times HDD65 + HC7 \times (VS \times HDD50)^{2}]$$

where

VS = annual average daily incident solar energy on surface

SHMC = sum of the HMC from Equation C-12 for each *mass* wall in the zone

 EA_H = effective solar aperture fraction for zone calculated using Equation C-17.

$$EA_H = \frac{\sum SA_H}{\text{Area}_{grosswall}}$$
 (C-17)

 ΣSA_h = the sum of SA_h from Equation C-7 for all *vertical* fenestration in the zone.

The coefficients used in the above equations depend on the *orientation* of the surface and shall be found in Table C6.8.3. Terms not defined for Equation C-16 are found under Equation C-14.

C6.9 Skylights in the Exterior Building Envelope. HEAT and COOL shall be calculated for *skylights* in *nonresidential conditioned* and *residential conditioned* zones using Equations C-18 and C-19.

HEAT = Area_{sky} × HDD65 × 0.66 ×
(H₂ ×
$$U_{sky}$$
 + H₃ × 1.163 × SHGC) (C-18)

$$COOL = Area_{sky} \times C_2 \times CDD50 \times 0.093 \times SHGC \quad (C-19)$$

where

Area_{skv} = *fenestration* area of the *skylight* assembly

SHGC = the *solar heat gain coefficien*t of the *skylight* assembly

 $U_{skv} = U$ -factor of skylight assembly

The coefficients used in the equations depend on the space type and shall be taken from Table C6.9.

TABLE C6.8.2 Cooling Coefficients for the Exterior Wall Equation

Vowiable		Orientation	n of Surface	
Variable	North	East	South	West
CU1	0.001539	0.003315	0.003153	0.00321
CU2	-3.0855E-08	-8.9662E-08	-7.1299E-08	-8.1053E-08
CU3	7.99493E-14	3.7928E-14	1.83083E-14	3.3981E-14
CU4	-0.079647	0.163114	0.286458	0.11178
CM1	0.32314	0.515262	0.71477	0.752643
CM2	1.5306E-06	1.38197E-06	1.6163E-06	1.42228E-06
CM3	-2.0432E-06	-1.6024E-06	-2.1106E-06	-1.9794E-06
CM4	-7.5367E-07	-7.6785E-07	-6.6443E-07	-7.4007E-07
CM5	-1.0047E-06	0	8.01057E-06	3.15193E-06
CM6	3.66708E-05	3.56503E-05	4.48106E-05	2.96012E-05
CM7	-6.7305E-05	-6.4094E-05	-0.000119	-7.6672E-05
CM8	-2.3834E-08	-4.7253E-08	-4.9747E-08	0
CUO1	-6.5109E-06	-8.3867E-06	-8.89E-06	-7.5647E-06
CUO2	-1.040207	-1.507235	-1.512625	-1.238545
CUO3	-4.3825E-06	-2.7883E-06	-2.3135E-06	-4.1257E-06
CUO4	0.000012658	8.09874E-06	7.36219E-06	1.06712E-05
CXUO1	1.03744E-06	1.19338E-06	1.18588E-06	1.23251E-06
CXUO2	-1.3218E-13	-1.3466E-13	-1.1625E-13	-1.3E-13
CXUO3	2.75554E-05	2.02621E-05	2.02365E-05	2.36964E-05
CXUO4	9.7409E-08	1.175E-07	9.39207E-08	1.36276E-07
CXUO5	-1.1825E-05	-9.0969E-06	-9.0919E - 06	-1.1108E-05
CG1	0.891286	0.583388	0.393756	0.948654
CG2	0.001479	0.001931	0.002081	0.001662
CG3	-5.5204E-13	-2.8214E-13	-2.8477E-13	-4.5572E-13
CG4	2.52311E-06	3.70821E-06	4.30536E-06	5.91511E-06
CG5	-0.001151	-0.001745	-0.001864	-0.00153
CG6	1.95243E-12	0	-2.9606E-12	3.16358E-12
CG7	-8.3581E-12	1.01089E-11	3.30027E-11	0
CG8	1.41022E-06	7.53875E-07	7.133E-07	9.70752E-07
CG9	-2.3889E-06	-1.6496E-06	-1.6393E-06	-1.9736E-06
CS1	46.9871	33.9683	18.32016	29.3089
CS2	3.48091E-05	3.74118E-05	0.000034049	5.02498E-05
CS3	0	0	2.71313E-12	0
CS4	-1.6641E-05	6.94779E-06	-2.8218E-05	-2.7716E-05
CS5	8.42765E-12	0	-3.0468E-12	2.91137E-12
CS6	-56.5446	0	26.9954	14.9771
CS7	-1.3476E-11	-5.881E-12	-6.5009E-12	-7.8922E-12
CC1	0.002747	0	0.010349	0.001865
CC2	0	3.18928E-07	-3.0441E-07	0
CC3	-0.000348	0.000319	0.00024	0.000565
CC4	1.22123E-08	-7.7532E-08	-2.7144E-08	-5.4438E-08
CC5	0.012112	0.011894	0.013248	0.009236
CC6	1.04027E-12	-6.2266E-13	-2.0518E-12	0
CC7	-1.2401E-05	-7.0628E-06	-1.6538E-05	-6.0269E-06
CC8	0	0	8.20869E-13	0.020712-00
CC9	-3.758E-14	6.06235E-14	1.97598E-14	3.89425E-14
CC10	0.030056	0.00233E-14 0.023121	0.0265	0.01704
CC10	0.030030	0.023121	-0.271026	-0.244274
CC12	0.002138	0.001103	0.006368	0.007323
CC12	-12.8674	-13.16522	-18.271	-10.1285

TABLE C6.8.3 Heating Coefficients for the Exterior Wall Equation

**		Orientation	of Surface	
Variable	North	East	South	West
HU1	0.006203	0.007691	0.006044	0.006672
HU2	-1.3587E-12	-5.7162E-13	-2.69E-13	-4.3566E-13
HM1	0.531005	0.545732	0.837901	0.616936
HM2	0.000152	0.000107	0.000208	0.00015
HM3	-5.3183E-07	-1.0619E-07	-6.8253E-07	-2.6457E-07
HM4	-7.7381E-07	-1.4787E-06	2.11938E-06	-4.5783E-07
HM5	-0.000712	-0.000484	-0.001042	-0.000625
HM6	3.34859E-13	4.95762E-14	7.7019E-14	7.37105E-14
HM7	2.39071E-07	2.75045E-07	-3.8989E-07	0
HUO1	0.004943	0.008683	0.009028	0.008566
HUO2	0.013686	0.011055	0.010156	0.01146
HUO3	-1.1018E-05	-8.6896E-06	-7.3232E-06	-8.9867E-06
HXUO1	1.2694E-12	7.85644E-14	-2.8202E-13	3.04904E-14
HXUO2	-7.3058E-13	-8.109E-14	7.45599E-14	-7.4718E-14
HXUO3	1.9709E-07	1.94026E-07	9.87587E-08	1.95776E-07
HG1	-0.001051	-0.000983	-0.000981	-0.000948
HG2	-0.001063	-0.00093	-0.000815	-0.000975
HG3	2.99013E-06	2.62269E-06	2.4188E-06	2.49976E-06
HG4	7.49049E-07	-1.1106E-06	-2.1669E-06	-8.5605E-07
HG5	0.000109	0.000093431	9.75523E-05	8.62389E-05
HG6	-5.5591E-07	-3.158E-07	-2.61E-07	-2.9133E-07
HS1	-2.1825E-05	-2.0922E-05	-2.1089E-05	-2.0205E-05
HS2	3.39179E-12	1.905E-12	1.48388E-12	2.18215E-12
HS3	-6.5325E-06	-2.2341E-05	-1.8473E-05	-2.4049E-05
HS4	2.23087E-05	2.41331E-05	2.45412E-05	2.30538E-05
HC1	-0.106468	-5.19297	-3.66743	-5.29681
HC2	0.00729	0.007684	0.007175	0.007672
HC3	-2.976E-07	-3.0784E-07	-2.6419E-07	-3.0713E-07
HC4	2.01569E-06	6.3035E-06	3.32112E-06	6.43491E-06
HC5	1.29061E-05	4.77552E-06	3.25089E-06	4.83233E-06
HC6	-1.2859E-05	-6.1854E-06	-4.6309E-06	-6.251E-06
HC7	2.75861E-12	8.20051E-13	4.38148E-13	8.09106E-13

C6.10 Calculations for Other Exterior and Semi-Exterior Surfaces. For all *exterior* and *semi-exterior* surfaces not covered in Sections C6.8 and C6.9, the cooling factor, COOL, and heating factor, HEAT, shall be calculated using the procedure in this section.

C6.10.1 U-Factor for Below-Grade Walls. The effective *U-factor* of *below-grade walls* shall be calculated using Equation C-20. R_{soil} shall be selected from Table C6.10.1 based on the average depth of the bottom of the wall below the surface of the ground.

U-factor =
$$1 / ((1/C\text{-factor}) + 0.85 + R_{soil})$$
 (C-20)

where

R_{soil} = effective R-value of the soil from Table C6.10.1

C6.10.2 Adjustment for Other Protected Elements of the Exterior Envelope. The adjusted *U-factor* for *exterior*

envelope surfaces, which are protected from outdoor conditions by crawlspaces, attics, or parking garages with natural or mechanical ventilation, shall be adjusted using Equation C-21 before calculating HEAT and COOL.

$$U_{adi} = 1 / ((1 / U - factor) + 2)$$
 (C-21)

C6.10.3 Calculation of COOL and HEAT. COOL and HEAT shall be calculated for each surface using Equations C-22 and C-23 and coefficients from Table C6.10.2, which depend on surface classification and *space-conditioning category*.

$$COOL = Size \times Factor \times 0.08 \times$$

$$(Ccoef1 \times CDD50 + Ccoef2)$$
(C-22)

 $HEAT = Size \times Hcoef \times Factor \times HDD65 \times 0.66 \quad \text{(C-23)}$ where

Size = area of surface or length of exposed *slab-on-grade floor* perimeter in the building

TABLE C6.10.1 Effective R-Value of Soil for Below-Grade Walls

Ccoef1, Ccoef2	=	coefficients, from Table C6.10.2
Hcoef	=	coefficient from Table C6.10.2
Factor	=	U -factor except U_{adj} calculated using Equation C-21 for protected surfaces and for slab-on-grade floors, perimeter F -factor

Depth, ft	R _{soil} (h·ft ² ·°F/Btu)
1	0.86
2	1.6
3	2.2
4	2.9
5	3.4
6	4.0
7	4.5
8	5.1
9	5.6
10	6.1

TABLE C6.9 Heating and Cooling Coefficients for Skylights

Coefficient	Nonresidential	Residential
C ₂	1.09E-02	1.64E-02
H_2	2.12E-04	2.91E-04
H_3	-1.68E-04	-2.96E-04

TABLE C6.10.2 Heating and Cooling Coefficients for Other Exterior and Semi-Exterior Surfaces

Building Envelope Classification			Exte	rior	•		Se	emi-Exter	ior
Space-Conditioning Type	No	onresiden	tial]	Residenti	al		All	
Surface Type	Ccoef1	Ccoef2	Hcoef	Ccoef1	Ccoef2	Hcoef	Ccoef1	Ccoef2	Hcoef
Roof	0.001153	5.56	2.28E-04	0.001656	9.44	3.37E-04	0	0	8.08E-05
Wall, above-grade, and opaque doors	6.04E-04	0	2.28E-04	1.18E-03	0	3.37E-04	0	0	7.56E-05
Wall, below-grade	2.58E-04	0	2.29E-04	6.80E-04	0	3.35E-04	N/A	0	7.85E-05
Mass floor	6.91E-04	0	2.39E-04	1.01E-03	0	3.60E-04	0	0	7.14E-05
Other floor	7.09E-04	0	2.43E-04	9.54E-04	0	3.66E-04	0	0	7.14E-05
Slab-on-grade floor	0	0	2.28E-04	0	0	3.37E-04	0	0	6.80E-05
Vertical fenestration	N/A	0	N/A	N/A	0	N/A	0	0	7.56E-05
Skylights	N/A	0	N/A	N/A	0	N/A	0	0	8.08E-05

(This is a normative appendix and is part of this standard.)

NORMATIVE APPENDIX D CLIMATIC DATA

		TABLE	-	and US Tei	US and US Territory Climatic Data	atic Data			
							Cooling Design	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
Alabama (AL)									
Alexander City	32.95 N	85.93 W	640	2910	5102	N.A.	N.A.	N.A.	N.A.
Anniston FAA AP	33.58 N	85.85 W	611	2854	5217	19	93	92	N.A.
Auburn Agronomy Farm	32.60 N	85.50 W	652	2612	5428	N.A.	N.A.	N.A.	N.A.
Birmingham FAA AP	33.57 N	86.75 W	625	2918	5206	18	92	75	092
Dothan	31.32 N	85.45 W	400	1703	6599	28	93	76	N.A.
Gadsden Steam Plant	34.03 N	86.00 W	292	3317	4805	N.A.	N.A.	N.A.	N.A.
Huntsville WSO AP	34.65 N	86.77 W	624	3323	4855	15	92	74	N.A.
Mobile WSO AP	30.68 N	88.25 W	211	1702	6761	26	92	76	774
Montgomery WSO AP	32.30 N	86.40 W	221	2224	2990	24	93	76	734
Selma	32.42 N	87.00 W	147	2249	0809	N.A.	N.A.	N.A.	N.A.
Talladega	33.43 N	86.08 W	555	2790	2097	N.A.	N.A.	N.A.	N.A.
Tuscaloosa FAA AP	33.23 N	87.62 W	169	2661	5624	20	94	77	N.A.
Alaska (AK)									
Anchorage WSCMO AP	61.17 N	150.02 W	114	10,570	889	-14	89	57	521
Barrow WSO AP	71.30 N	156.78 W	31	20,226	0	41	52	49	N.A.
Fairbanks WSFO AP	64.82 N	147.87 W	436	13,940	1040	-47	77	59	682
Juneau AP	58.37 N	134.58 W	12	2688	559	4	69	58	540
Kodiak WSO AP	57.75 N	152.50 W	1111	8817	451	7	65	99	384
Nome WSO AP	64.50 N	165.43 W	13	14,129	274	-31	65	55	210
Arizona (AZ)									
Douglas FAA AP	31.47 N	109.60 W	4098	2767	4786	N.A.	N.A.	N.A.	N.A.
Flagstaff WSO AP	35.13 N	111.67 W	2006	7131	1661	_	83	55	N.A.
Kingman	35.20 N	114.02 W	3539	3212	5040	22	76	63	N.A.
Nogales	31.42 N	110.95 W	3560	2928	4554	N.A.	N.A.	N.A.	N.A.
Phoenix WSFO AP	33.43 N	112.02 W	1110	1350	8425	34	108	70	746

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Design Temperature	ı Temperature	;
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m.–4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(Arizona cont.)									
Prescott	34.57 N	112.43 W	5205	4995	2875	15	91	09	725
Tucson WSO AP	32.13 N	110.93 W	2584	1678	6921	31	102	65	716
Winslow WSO AP	35.02 N	110.73 W	4890	4776	3681	10	93	09	634
Yuma WSO AP	32.67 N	114.60 W	206	927	2688	40	109	72	269
Arkansas (AR)									
Blytheville AFB	35.97 N	W 56.98	256	3656	5133	12	95	77	N.A.
Camden	33.60 N	92.82 W	116	2953	5309	N.A.	N.A.	N.A.	N.A.
Fayetteville	36.00 N	94.17 W	1250	4040	4452	9	93	75	N.A.
Ft Smith WSO AP	35.33 N	94.37 W	449	3478	5078	13	96	92	547
Hot Springs	34.52 N	93.05 W	089	3181	5243	N.A.	N.A.	N.A.	N.A.
Jonesboro	35.88 N	90.70 W	390	3504	5118	N.A.	N.A.	N.A.	N.A.
Little Rock FAA AP	34.73 N	92.23 W	257	3155	5299	16	95	77	626
Pine Bluff	34.22 N	92.02 W	215	3016	5467	N.A.	N.A.	N.A.	N.A.
Texarkana FAA AP	33.45 N	94.00 W	361	2295	6152	20	95	77	N.A.
California (CA)									
Bakersfield WSO AP	35.42 N	119.05 W	495	2182	6049	32	101	69	848
Blythe FAA Airport	33.62 N	114.72 W	390	1144	6848	N.A.	N.A.	N.A.	N.A.
Burbank Hollywood	34.20 N	118.37 W	774	1204	5849	39	95	69	N.A.
Chico University Farm	39.70 N	121.82 W	185	2953	4454	N.A.	N.A.	N.A.	N.A.
Crescent City	41.77 N	124.20 W	40	4397	1628	N.A.	N.A.	N.A.	N.A.
El Centro	32.77 N	115.57 W	-30	1156	8132	N.A.	N.A.	N.A.	N.A.
Eureka WSO City	40.80 N	124.17 W	09	4496	1529	N.A.	N.A.	N.A.	N.A.
Fairfield/Travis AFB	38.27 N	121.93 W	62	2556	4223	31	94	29	N.A.
Fresno WSO AP	36.77 N	119.72 W	328	2556	5350	30	101	70	785
Laguna Beach	33.55 N	117.78 W	35	2157	3881	N.A.	N.A.	N.A.	N.A.
Livermore	37.67 N	121.77 W	480	2909	3810	N.A.	N.A.	N.A.	N.A.
Lompoc	34.65 N	120.45 W	95	2651	3240	N.A.	N.A.	N.A.	N.A.
Long Beach WSO AP	33.82 N	118.15 W	34	1430	5281	40	88	29	1502
Los Angeles WSO AP	33.93 N	118.38 W	100	1458	4777	43	81	64	1849
Merced/Castle AFB	37.37 N	120.57 W	187	2687	4694	30	76	69	N.A.
Monterey	36.60 N	121.90 W	385	3125	2574	N.A.	N.A.	N.A.	N.A.

_
US and US Ierritory Climatic Data (continued)
Jata
Climatic
lerritory
S
US and
Ξ
IABLE D-1

							Cooling Design	Cooling Design Temperature	;
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m.–4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(California cont.)									
Napa State Hospital	38.28 N	122.27 W	09	2844	3463	N.A.	N.A.	N.A.	N.A.
Needles FAA Airport	34.77 N	114.62 W	914	1309	8645	N.A.	N.A.	N.A.	N.A.
Oakland/Intl	37.73 N	122.20 W	7	2644	3126	N.A.	N.A.	N.A.	1905
Oceanside Marina	33.22 N	117.40 W	10	2010	4069	N.A.	N.A.	N.A.	N.A.
Ontario/Intl	34.05 N	117.62 W	961	1488	5823	35	86	70	N.A.
Oxnard	34.20 N	119.18 W	49	1992	3980	39	62	64	N.A.
Palm Springs	33.83 N	116.50 W	425	586	8555	N.A.	N.A.	N.A.	N.A.
Palmdale	34.58 N	118.10 W	2596	2948	4863	N.A.	N.A.	N.A.	N.A.
Pasadena	34.15 N	118.15 W	864	1453	5476	N.A.	N.A.	N.A.	N.A.
Petaluma Fire Stn 3	38.23 N	122.63 W	27	3050	3188	N.A.	N.A.	N.A.	N.A.
Pomona Cal Poly	34.07 N	117.82 W	740	1713	5145	N.A.	N.A.	N.A.	N.A.
Redding WSO	40.50 N	122.30 W	502	2855	4964	N.A.	N.A.	N.A.	N.A.
Redlands	34.05 N	117.18 W	1318	1875	5435	N.A.	N.A.	N.A.	N.A.
Richmond	37.93 N	122.35 W	55	2574	3285	N.A.	N.A.	N.A.	N.A.
Riverside/March AFB	33.90 N	117.25 W	1535	1861	5295	34	86	89	N.A.
Sacramento FAA AP	38.52 N	121.50 W	18	2749	4474	30	76	89	066
Salinas FAA AP	36.67 N	121.60 W	69	2964	2951	33	78	62	N.A.
San Bernardino/Norton	$34.10\mathrm{N}$	117.23 W	1155	1821	5450	34	101	70	N.A.
San Diego WSO AP	32.73 N	117.17 W	13	1256	5223	44	81	29	1911
San Francisco WSO AP	37.62 N	122.38 W	~	3016	2883	37	78	62	1796
San Jose	37.35 N	121.90 W	29	2387	3935	35	68	99	N.A.
San Luis Obispo Poly	35.30 N	120.67 W	315	2498	3492	N.A.	N.A.	N.A.	N.A.
Santa Ana Fire Station	33.75 N	117.87 W	135	1238	5430	N.A.	N.A.	N.A.	N.A.
Santa Barbara FAA AP	34.43 N	119.83 W	6	2438	3449	34	80	64	N.A.
Santa Cruz	36.98 N	122.02 W	130	5969	2913	N.A.	N.A.	N.A.	N.A.
Santa Maria WSO AP	34.90 N	120.45 W	254	2984	2918	32	82	62	2016
Santa Monica Pier	34.00 N	118.50 W	14	1819	4145	N.A.	N.A.	N.A.	N.A.
Santa Paula	34.32 N	119.15 W	237	2039	4114	N.A.	N.A.	N.A.	N.A.
Santa Rosa	38.45 N	122.70 W	167	2883	3432	N.A.	N.A.	N.A.	N.A.
Stockton WSO AP	37.90 N	121.25 W	22	2707	4755	30	26	89	N.A.
Ukiah	39.15 N	123.20 W	623	2954	3868	N.A.	N.A.	N.A.	N.A.

							Cooling Dogin	Tompono franc	
State						Heating Design	Drv-Bulb	Coung Design reinperature Drv-Bulh Wet-Bulh	No. Hrs.
City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature			8 a.m.–4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(California cont.)									
Visalia	36.33 N	119.30 W	325	2511	5186	N.A.	N.A.	N.A.	N.A.
Yreka	41.72 N	122.63 W	2625	5386	2611	N.A.	N.A.	N.A.	N.A.
Colorado (CO)									
Alamosa WSO AP	37.45 N	105.87 W	7536	8749	1374	-17	82	55	N.A.
Boulder	40.03 N	105.28 W	5420	5554	2820	N.A.	N.A.	N.A.	N.A.
Colorado Sprgs WSO AP	38.82 N	104.72 W	0609	6415	2312	-2	87	58	725
Denver WSFO AP	39.77 N	104.87 W	5286	6020	2732	-3	06	59	739
Durango	37.28 N	107.88 W	0099	6911	1942	N.A.	N.A.	N.A.	N.A.
Ft Collins	40.58 N	105.08 W	5004	8989	2411	N.A.	N.A.	N.A.	N.A.
Grand Junction WSO AP	39.10 N	108.55 W	4849	5548	3632	2	94	09	518
Greeley UNC	40.42 N	104.70 W	4715	9089	2698	N.A.	N.A.	N.A.	N.A.
La Junta FAA AP	38.05 N	103.52 W	4190	5265	3795	N.A.	N.A.	N.A.	N.A.
Pueblo WSO AP	38.28 N	104.52 W	4640	5413	3358	-1	94	62	720
Sterling	40.62 N	103.22 W	3938	6541	2809	N.A.	N.A.	N.A.	N.A.
Trinidad FAA AP	37.25 N	104.33 W	5746	5483	2976	-2	06	09	N.A.
Connecticut (CT)									
Bridgeport WSO AP	41.17 N	73.13 W	10	5537	2997	~	84	72	N.A.
Hartford-Brainard Fld	41.73 N	72.65 W	15	6155	2768	2	88	72	598
Norwalk Gas Plant	41.12 N	73.42 W	37	5865	2768	N.A.	N.A.	N.A.	N.A.
Norwich Pub Util Plt	41.53 N	72.07 W	20	5869	2687	N.A.	N.A.	N.A.	N.A.
Delaware (DE)									
Dover	39.15 N	75.52 W	30	4337	3894	14	68	75	N.A.
Wilmington WSO AP	39.67 N	75.60 W	79	4937	3557	10	68	74	617
Florida (FL)									
Belle Glade Exp Stn	26.67 N	80.63 W	16	451	8285	N.A.	N.A.	N.A.	N.A.
Daytona Beach WSO AP	29.18 N	81.05 W	29	606	7567	34	06	77	641
Ft Lauderdale	26.07 N	80.15 W	10	171	9735	46	06	78	N.A.
Ft Myers FAA AP	26.58 N	81.87 W	15	418	8924	42	93	77	N.A.
Ft Pierce	27.47 N	80.35 W	25	490	8448	N.A.	N.A.	N.A.	N.A.
Gainesville Mun AP	29.68 N	82.27 W	138	1267	4007	30	92	77	N.A.
Jacksonville WSO AP	30.50 N	81.70 W	26	1434	6847	29	93	77	674

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(Florida cont.)									
Key West WSO AP	24.55 N	81.75 W	4	100	10,174	55	68	42	N.A.
Lakeland	28.02 N	81.92 W	145	288	8472	N.A.	N.A.	N.A.	N.A.
Miami WSCMO AP	25.80 N	80.30 W	12	200	9474	46	06	77	259
Ocala	29.20 N	82.08 W	75	930	9692	N.A.	N.A.	N.A.	N.A.
Orlando WSO Mc Coy	28.43 N	81.33 W	91	989	8227	37	93	92	571
Panama City/Tyndall	30.07 N	85.58 W	16	1216	7023	33	68	79	N.A.
Pensacola FAA AP	30.47 N	87.20 W	112	1617	6816	28	92	78	N.A.
St Augustine WFOY	29.90 N	81.32 W	∞	1040	7261	N.A.	N.A.	N.A.	N.A.
St Petersburg	27.77 N	82.63 W	8	603	8537	43	93	79	N.A.
Tallahassee WSO AP	30.38 N	84.37 W	55	1705	6639	25	93	76	747
Tampa WSCMO AP	27.97 N	82.53 W	19	725	8239	36	91	77	592
West Palm Beach WSO AP	26.68 N	80.12 W	18	323	9049	43	06	78	308
Georgia (GA)									
Albany	31.53 N	84.13 W	180	2205	6020	27	95	76	N.A.
Americus	32.05 N	84.25 W	490	2430	5634	N.A.	N.A.	N.A.	N.A.
Athens WSO AP	33.95 N	83.32 W	802	2893	5079	20	92	75	N.A.
Atlanta WSO AP	33.65 N	84.43 W	1010	2991	5038	18	91	74	749
Augusta WSO AP	33.37 N	W 76.18	148	2565	5519	21	94	92	774
Brunswick	31.17 N	81.50 W	13	1578	6229	30	91	79	N.A.
Columbus WSO AP	32.52 N	84.95 W	449	2261	6052	23	93	7.5	N.A.
Dalton	34.75 N	84.95 W	200	3552	4546	N.A.	N.A.	N.A.	N.A.
Dublin	32.50 N	82.90 W	215	2476	5664	N.A.	N.A.	N.A.	N.A.
Gainesville	34.30 N	83.85 W	1170	3500	4310	N.A.	N.A.	N.A.	N.A.
La Grange	33.05 N	85.02 W	715	2667	5216	N.A.	N.A.	N.A.	N.A.
Macon WSO AP	32.70 N	83.65 W	354	2334	5826	23	94	75	787
Savannah WSO AP	32.13 N	81.20 W	46	1847	6389	26	93	92	N.A.
Valdosta/Moody AFB	30.97 N	83.20 W	233	1552	7216	30	94	77	N.A.
Waycross	31.25 N	82.32 W	145	2025	6172	29	94	92	N.A.
Hawaii (HI)									
Hilo (Hawaii)	19.72 N	155.07 W	36	0	8759	61	84	74	153
Honolulu WSFO AP (Oahu)	21.33 N	157.92 W	7	0	9949	61	88	73	69
	2.00	W CO 731	100		8055	13	8.8	77	7

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m.–4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
Idaho (ID)									
Boise WSFO AP	43.57 N	116.22 W	2838	5861	2807	2	94	63	647
Burley FAA AP	42.53 N	113.77 W	4157	6745	2174	<u>~</u>	06	62	N.A.
Coeur D'Alene R S	47.68 N	116.75 W	2158	6239	2216	N.A.	N.A.	N.A.	N.A.
Idaho Falls FAA AP	43.52 N	112.07 W	4730	8063	1853	-12	68	09	N.A.
Lewiston WSO AP	46.38 N	117.02 W	1436	5270	2964	9	93	64	748
Moscow-Univ of Idaho	46.73 N	116.97 W	2660	6782	1789	N.A.	N.A.	N.A.	N.A.
Mountain Home	43.13 N	115.70 W	3190	6176	2725	0	96	62	N.A.
Pocatello WSO AP	42.92 N	112.60 W	4454	7180	2142	7-	06	09	546
Twin Falls WSO	42.55 N	114.35 W	3960	6929	1995	N.A.	N.A.	N.A.	N.A.
Illinois (IL)									
Aurora	41.75 N	88.35 W	644	6699	2880	N.A.	N.A.	N.A.	N.A.
Belleville/Scott AFB	38.55 N	89.85 W	453	4878	4146	3	93	77	N.A.
Carbondale Sewage Plt	37.73 N	89.17 W	390	4865	3934	N.A.	N.A.	N.A.	N.A.
Champaign	40.03 N	88.28 W	755	6899	3697	N.A.	N.A.	N.A.	N.A.
Chicago Midway AP	41.73 N	87.77 W	620	6176	3251	N.A.	N.A.	N.A.	N.A.
Chicago O'Hare WSO AP	41.98 N	W 06.78	674	6536	2941	9–	88	73	613
Chicago University	41.78 N	87.60 W	594	5753	3391	N.A.	N.A.	N.A.	N.A.
Danville	40.13 N	87.65 W	558	5610	3471	4	06	77	N.A.
Decatur	39.83 N	89.02 W	620	5522	3652	-2	91	75	N.A.
Dixon	41.83 N	89.52 W	200	6873	2965	N.A.	N.A.	N.A.	N.A.
Freeport Waste Wtr Plt	42.30 N	W 09.68	750	7169	2739	N.A.	N.A.	N.A.	N.A.
Galesburg	40.95 N	90.38 W	771	6314	3249	N.A.	N.A.	N.A.	N.A.
Joliet Brandon Rd Dam	41.50 N	88.10 W	543	6463	3025	N.A.	N.A.	N.A.	N.A.
Moline WSO AP	41.45 N	90.50 W	582	6474	3207	8-	06	74	640
Mt Vernon	38.35 N	88.87 W	490	5189	3818	N.A.	N.A.	N.A.	N.A.
Peoria WSO AP	40.67 N	W 89.68	959	6148	3339	9-	68	74	N.A.
Quincy FAA AP	39.93 N	91.20 W	763	5763	3574	4	91	75	N.A.
Rantoul	40.32 N	88.17 W	740	6183	3288	N.A.	N.A.	N.A.	N.A.
Rockford WSO AP	42.20 N	89.10 W	724	6969	2852	-10	88	73	N.A.
Springfield WSO AP	39.85 N	W 89.68	594	2688	3635	4	91	7.5	009
W/	14.00	111 00 20	002	7136	2515	Z	Z	N A	× 1/2

TABLE D-1 US and US Territory Climatic Data (continued)

State City Indiana (IN)							Cooling Desig	Cooling Design Temperature	
State City Indiana (IN)									
Indiana (IN)	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m.–4 p.m.
Indiana (IN)						%9'66	1.0%	1.0%	55 < Tdb < 69
Anderson Sewage Plant	40.10 N	85.72 W	847	5916	3091	N.A.	N.A.	N.A.	N.A.
Bloomington Indiana U	39.17 N	86.52 W	825	5309	3585	N.A.	N.A.	N.A.	N.A.
Columbus	39.20 N	85.92 W	621	5536	3353	N.A.	N.A.	N.A.	N.A.
Evansville WSO AP	38.05 N	87.53 W	380	4708	4074	3	92	92	611
Ft Wayne WSO AP	41.00 N	85.20 W	797	6273	3077	4	88	73	601
Goshen College	41.57 N	85.83 W	805	6282	2941	N.A.	N.A.	N.A.	N.A.
Hobart	41.53 N	87.25 W	009	6043	3168	N.A.	N.A.	N.A.	N.A.
Indianapolis WSFO	39.73 N	86.27 W	792	5615	3453	-3	88	74	N.A.
Kokomo	40.42 N	86.05 W	855	6459	2978	N.A.	N.A.	N.A.	N.A.
Lafayette	40.35 N	86.87 W	009	6228	3069	-5	06	75	N.A.
Marion	40.57 N	85.67 W	240	6260	2996	N.A.	N.A.	N.A.	N.A.
Muncie Ball State Univ	40.22 N	85.42 W	940	6027	3196	N.A.	N.A.	N.A.	N.A.
Peru/Grissom AFB	40.65 N	86.15 W	814	8069	3439	-3	68	7.5	N.A.
Richmond Wtr Wks	39.88 N	84.88 W	1015	5963	3004	N.A.	N.A.	N.A.	N.A.
Shelbyville Sewage Plt	39.52 N	85.78 W	750	5784	3291	N.A.	N.A.	N.A.	N.A.
South Bend WSO AP	41.70 N	86.32 W	773	6331	2920	-2	87	72	635
Terre Haute	39.35 N	87.42 W	555	5581	3490	£,	06	92	N.A.
Valparaiso Waterworks	41.52 N	87.03 W	800	6267	2942	N.A.	N.A.	N.A.	N.A.
Iowa (IA)									
Ames	42.03 N	93.80 W	1099	9/19	3079	N.A.	N.A.	N.A.	N.A.
Burlington	40.78 N	91.12 W	297	5943	3601	4	91	92	649
Cedar Rapids FAA AP	41.88 N	91.70 W	863	6924	3003	-11	68	74	N.A.
Clinton	41.80 N	90.27 W	585	6324	3291	N.A.	N.A.	N.A.	N.A.
Des Moines WSFO AP	41.53 N	93.65 W	938	6497	3371	6-	06	74	299
Dubuque WSO AP	42.40 N	90.70 W	1065	7327	2672	N.A.	N.A.	N.A.	N.A.
Ft Dodge	42.50 N	94.20 W	1115	7261	2902	-13	88	73	N.A.
Iowa City	41.65 N	91.53 W	640	6227	3434	N.A.	N.A.	N.A.	N.A.
Keokuk Lock and Dam	40.40 N	91.37 W	527	6969	3467	N.A.	N.A.	N.A.	N.A.
Marshalltown	42.07 N	92.93 W	870	7170	2813	N.A.	N.A.	N.A.	N.A.
Mason City FAA AP	43.17 N	93.33 W	1194	7837	2653	-15	88	73	610

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooung Desig	Cooning Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(Iowa cont.)									
Newton	41.70 N	93.05 W	938	6783	3131	N.A.	N.A.	N.A.	N.A.
Ottumwa Airport	41.10 N	92.45 W	842	6979	3414	<u>\$-</u>	92	75	N.A.
Sioux City WSO AP	42.40 N	96.38 W	1103	6893	3149	-11	06	74	602
Waterloo WSO AP	42.55 N	92.40 W	898	7406	2813	-14	88	73	N.A.
Kansas (KS)									
Atchison	39.57 N	95.12 W	945	5184	3940	N.A.	N.A.	N.A.	N.A.
Chanute FAA Airport	37.67 N	95.48 W	826	4650	4226	N.A.	N.A.	N.A.	N.A.
Dodge City WSO AP	37.77 N	W 76.99	2582	5001	4090	0	76	70	637
El Dorado	37.82 N	96.83 W	1340	4587	4317	N.A.	N.A.	N.A.	N.A.
Garden City FAA AP	37.93 N	100.72 W	2882	5216	3936	-3	76	69	N.A.
Goodland WSO AP	39.37 N	101.70 W	3650	5974	3018	-3	94	99	625
Great Bend	38.35 N	W 77.86	1850	4679	4425	N.A.	N.A.	N.A.	N.A.
Hutchinson	37.93 N	98.03 W	1570	5103	4106	N.A.	N.A.	N.A.	N.A.
Liberal	37.05 N	$100.92 \mathrm{W}$	2834	4706	4185	N.A.	N.A.	N.A.	N.A.
Manhattan	39.20 N	96.58 W	1065	5043	4155	N.A.	N.A.	N.A.	N.A.
Parsons	37.37 N	95.28 W	910	4606	4339	N.A.	N.A.	N.A.	N.A.
Russell FAA AP	38.87 N	98.82 W	1864	5338	3939	4	96	72	N.A.
Salina FAA AP	38.80 N	97.63 W	1257	5101	4167	-3	76	73	N.A.
Topeka WSFO AP	39.07 N	95.63 W	877	5265	3880	-2	93	75	809
Wichita WSO AP	37.65 N	97.43 W	1321	4791	4351	2	76	73	N.A.
Kentucky (KY)									
Ashland	38.45 N	82.62 W	555	5225	3280	N.A.	N.A.	N.A.	N.A.
Bowling Green FAA AP	36.97 N	86.42 W	547	4328	4132	7	91	75	N.A.
Covington WSO AP	39.07 N	84.67 W	698	5248	3488	1	68	73	661
Hopkinsville/Campbell	36.67 N	87.50 W	571	3928	4654	N.A.	N.A.	N.A.	N.A.
Lexington WSO AP	38.03 N	84.60 W	996	4783	3754	4	68	73	618
Louisville WSFO AP	38.18 N	85.73 W	477	4514	4000	9	06	75	636
Madisonville	37.35 N	87.52 W	440	4167	4290	N.A.	N.A.	N.A.	N.A.
Owensboro	37.77 N	87.15 W	405	4334	4222	N.A.	N.A.	N.A.	N.A.
. J	to	111 22 88				t		t	

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Docia	Cooling Design Tomnorature	
State	I ofitudo	Lonaitude	Flox 6	HDD65	Conso	Heating Design	Dry-Bulb	Wet-Bulb	No. Hrs.
City	rantinge	anniguor	Elev., II	C0000	CDDSO	temperature			8 a.m.–4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
Louisiana (LA)									
Alexandria	31.32 N	92.47 W	87	2003	6407	27	94	78	N.A.
Baton Rouge WSO AP	30.53 N	91.13 W	64	1669	6845	27	92	77	677
Bogalusa	30.78 N	W 78.68	100	1911	6457	N.A.	N.A.	N.A.	N.A.
Houma	29.58 N	90.73 W	15	1429	6974	N.A.	N.A.	N.A.	N.A.
Lafayette FAA AP	30.20 N	91.98 W	38	1587	2289	28	93	78	N.A.
Lake Charles WSO AP	30.12 N	93.22 W	6	1616	6813	29	91	78	899
Minden	32.58 N	93.28 W	185	2533	5823	N.A.	N.A.	N.A.	N.A.
Monroe FAA AP	32.52 N	92.05 W	78	2407	6039	22	94	78	N.A.
Natchitoches	31.77 N	93.08 W	130	2152	6273	N.A.	N.A.	N.A.	N.A.
New Orleans WSCMO AP	29.98 N	90.25 W	4	1513	6910	30	92	78	482
Shreveport WSO AP	32.47 N	93.82 W	254	2,264	6166	22	95	77	269
Maine (ME)									
Augusta FAA AP	44.32 N	W 08.69	350	7550	2093	-3	84	69	N.A.
Bangor FAA AP	44.80 N	68.82 W	163	7930	1916	<i>L</i> -	84	69	699
Caribou WSO AP	46.87 N	68.02 W	624	9651	1470	-14	82	29	692
Lewiston	44.10 N	70.22 W	180	7244	2261	N.A.	N.A.	N.A.	N.A.
Millinocket	45.65 N	68.70 W	360	8902	1708	N.A.	N.A.	N.A.	N.A.
Portland WSMO AP	43.65 N	70.32 W	57	7378	1943	-3	83	70	999
Waterville Pmp Stn	44.55 N	W 59.69	06	7382	2180	N.A.	N.A.	N.A.	N.A.
Maryland (MD)									
Baltimore WSO AP	39.18 N	76.67 W	196	4707	3709	11	91	74	N.A.
Cumberland	39.63 N	78.75 W	730	5036	3432	N.A.	N.A.	N.A.	N.A.
Hagerstown	39.65 N	77.73 W	099	5293	3341	N.A.	N.A.	N.A.	N.A.
Salisbury	38.37 N	75.58 W	10	4027	4002	13	06	92	N.A.
Massachusetts (MA)									
Boston WSO AP	42.37 N	71.03 W	20	5641	2897	7	87	71	713
Clinton	42.40 N	71.68 W	398	8699	2457	N.A.	N.A.	N.A.	N.A.
Framingham	42.28 N	71.42 W	170	6262	2695	N.A.	N.A.	N.A.	N.A.
Lawrence	42.70 N	71.17 W	57	6322	2648	N.A.	N.A.	N.A.	N.A.
Lowell	42.65 N	71.37 W	110	6339	2715	N.A.	N.A.	N.A.	N.A.
New Bedford	41.63 N	70.93 W	120	5426	2973	N.A.	N.A.	N.A.	N.A.

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooning Desig	Coonng Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m.–4 p.m.
						%9'66	1.0%	1.0%	55 < Tdb < 69
(Massachusetts cont.)									
Springfield	42.10 N	72.58 W	190	5754	3037	N.A.	N.A.	N.A.	N.A.
Taunton	41.90 N	71.07 W	20	6346	2461	N.A.	N.A.	N.A.	N.A.
Worcester WSO AP	42.27 N	71.87 W	986	6269	2203	0	83	69	N.A.
Michigan (MI)									
Adrian	41.92 N	84.02 W	092	6737	2586	N.A.	N.A.	N.A.	N.A.
Alpena WSO AP	45.07 N	83.57 W	689	8284	1779	7-	8	69	969
Battle Creek/Kellogg	42.30 N	85.23 W	942	6416	3399	N.A.	N.A.	N.A.	N.A.
Benton Harbor AP	42.13 N	86.43 W	649	6303	2829	N.A.	N.A.	N.A.	N.A.
Detroit City Airport	42.42 N	83.02 W	625	6167	3046	0	87	72	N.A.
Escanaba	45.75 N	87.03 W	009	8593	1664	N.A.	N.A.	N.A.	N.A.
Flint WSO AP	42.97 N	83.75 W	992	6269	2451	-2	98	71	634
Grand Rapids WSO AP	42.88 N	85.52 W	707	6973	2537	0	98	71	622
Holland	42.80 N	86.12 W	610	6747	2536	N.A.	N.A.	N.A.	N.A.
Jackson FAA AP	42.27 N	84.45 W	1005	6791	2707	-3	98	73	N.A.
Kalamazoo State Hosp	42.28 N	85.60 W	945	6230	3015	N.A.	N.A.	N.A.	N.A.
Lansing WSO AP	42.77 N	84.60 W	841	7101	2449	-3	98	72	N.A.
Marquette	46.55 N	87.38 W	999	8356	1730	-13	82	29	N.A.
Mt Pleasant University	43.58 N	84.77 W	962	7436	2319	N.A.	N.A.	N.A.	N.A.
Muskegon WSO AP	43.17 N	86.23 W	628	6924	2361	3	83	70	N.A.
Pontiac State Hospital	42.65 N	83.30 W	982	6653	2770	N.A.	N.A.	N.A.	N.A.
Port Huron	42.98 N	82.42 W	290	8689	2541	N.A.	N.A.	N.A.	N.A.
Saginaw FAA AP	43.53 N	84.08 W	099	7139	2476	0	87	72	N.A.
Sault Ste Marie WSO	46.47 N	84.37 W	724	9316	1421	-12	08	89	733
Traverse City FAA AP	44.73 N	85.58 W	623	7749	2127	-3	98	70	629
Ypsilanti East Mich U	42.25 N	83.62 W	622	6466	2878	N.A.	N.A.	N.A.	N.A.
Minnesota (MN)									
Albert Lea	43.62 N	93.42 W	1230	8146	2608	N.A.	N.A.	N.A.	N.A.
Alexandria FAA AP	45.87 N	95.38 W	1416	6668	2316	-20	98	70	N.A.
Bemidji Airport	47.50 N	94.93 W	1377	10200	1781	N.A.	N.A.	N.A.	N.A.
Brainerd	46.37 N	94.20 W	1180	9437	1958	-24	85	89	N.A.
Duluth WSO AP	46.83 N	92.18 W	1428	9818	1536	-21	81	29	059

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Docig	Cooling Design Tomporature	
Stots						Heating Design	Dry Rulh	Wot-Bulk	No. Hrs.
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Build	wet-build	8 a.m.–4 p.m.
						%9'66	1.0%	1.0%	55 < Tdb < 69
(Minnesota cont.)									
Faribault	44.30 N	93.27 W	940	8279	2498	N.A.	N.A.	N.A.	N.A.
International Falls WSO AP	48.57 N	93.38 W	1179	10,487	1630	-29	83	29	959
Mankato	44.15 N	94.02 W	836	8005	2691	N.A.	N.A.	N.A.	N.A.
Minneapolis-St Paul WSO AP	44.88 N	93.22 W	834	7981	2680	-16	88	71	999
Rochester WSO AP	43.92 N	92.50 W	1297	8250	2376	-17	85	71	652
St Cloud WSO AP	45.55 N	94.07 W	1037	8858	2149	-20	88	71	N.A.
Virginia	47.50 N	92.55 W	1435	10,024	1583	N.A.	N.A.	N.A.	N.A.
Willmar State Hospital	45.13 N	95.02 W	1128	8637	2465	N.A.	N.A.	N.A.	N.A.
Winona	44.05 N	91.63 W	652	7694	2695	N.A.	N.A.	N.A.	N.A.
Mississippi (MS)									
Biloxi/Keesler AFB	30.42 N	88.92 W	26	1486	6946	31	91	78	N.A.
Clarksdale	34.20 N	90.57 W	173	3188	5357	N.A.	N.A.	N.A.	N.A.
Columbus AFB	33.65 N	88.45 W	220	2769	5955	20	94	78	N.A.
Greenville	33.38 N	91.02 W	132	2778	5661	N.A.	N.A.	N.A.	N.A.
Greenwood FAA AP	33.50 N	W 80.08	155	2698	2760	20	94	78	N.A.
Hattiesburg	31.32 N	89.30 W	161	2180	9809	N.A.	N.A.	N.A.	N.A.
Jackson WSFO AP	32.32 N	W 80.08	330	2467	2900	21	93	92	640
Laurel	31.68 N	89.12 W	225	2327	5893	N.A.	N.A.	N.A.	N.A.
McComb FAA AP	31.23 N	90.47 W	413	2115	6025	23	92	92	N.A.
Meridian WSO AP	32.33 N	88.75 W	294	2444	5804	21	94	92	719
Natchez	31.55 N	91.38 W	195	1903	6378	N.A.	N.A.	N.A.	N.A.
Tupelo WSO AP	34.27 N	88.73 W	361	3079	5224	18	94	92	N.A.
Vicksburg Military Pk	32.35 N	90.85 W	255	2196	6509	N.A.	N.A.	N.A.	N.A.
Missouri (MO)									
Cape Girardeau FAA AP	37.23 N	89.57 W	337	4386	4359	9	94	77	N.A.
Columbia WSO AP	38.82 N	92.22 W	887	5212	3752	-1	92	75	633
Farmington	37.70 N	90.38 W	935	5041	3653	N.A.	N.A.	N.A.	N.A.
Hannibal	39.72 N	91.37 W	712	5628	3685	N.A.	N.A.	N.A.	N.A.
Jefferson City Wtr Plt	38.58 N	92.15 W	029	5302	3705	N.A.	N.A.	N.A.	N.A.
Joplin FAA AP	37.17 N	94.50 W	086	4303	4417	3	94	7.5	N.A.
Kansas City WSO AP	39.32 N	94.72 W	973	5393	3852	-1	93	7.5	N.A.

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(Missouri cont.)									
Kirksville Radio KIRX	40.22 N	92.58 W	026	2867	3494	N.A.	N.A.	N.A.	N.A.
Mexico	39.18 N	91.88 W	775	5590	3664	N.A.	N.A.	N.A.	N.A.
Moberly Radio KWIX	39.40 N	92.43 W	840	5204	3948	N.A.	N.A.	N.A.	N.A.
Poplar Bluff R S	36.77 N	90.42 W	380	4328	4368	∞	92	76	N.A.
Rolla	38.13 N	91.77 W	1148	4748	4186	N.A.	N.A.	N.A.	N.A.
Rolla Univ of MO	37.95 N	91.77 W	1180	4959	3986	N.A.	N.A.	N.A.	N.A.
St Joseph	39.77 N	94.92 W	811	5590	3783	N.A.	N.A.	N.A.	N.A.
St Louis WSCMO AP	38.75 N	90.37 W	535	4758	4283	2	93	75	N.A.
Montana (MT)									
Billings WSO AP	45.80 N	108.53 W	3567	7164	2466	-13	06	62	617
Bozeman	45.82 N	110.88 W	5950	8066	672	-20	87	09	N.A.
Butte FAA AP	45.95 N	112.50 W	5540	9517	1152	-22	84	56	N.A.
Cut Bank FAA AP	48.60 N	112.37 W	3838	8904	1475	-21	84	59	672
Glasgow WSO AP	48.22 N	106.62 W	2284	8745	2244	-22	06	63	570
Glendive	47.10 N	104.72 W	2076	8178	2619	N.A.	N.A.	N.A.	N.A.
Great Falls WSCMO AP	47.48 N	111.37 W	3663	7741	1993	-19	88	09	641
Havre WSO AP	48.55 N	109.77 W	2584	8447	2132	-25	06	62	N.A.
Helena WSO AP	46.60 N	112.00 W	3893	8031	1922	-18	87	59	651
Kalispell WSO AP	48.30 N	114.27 W	2965	8378	1345	-12	98	61	N.A.
Lewistown FAA AP	47.07 N	109.45 W	4132	8479	1580	-18	98	09	673
Livingston FAA AP	45.70 N	110.45 W	4653	7220	1900	N.A.	N.A.	N.A.	N.A.
Miles City FAA AP	46.43 N	105.87 W	2628	9622	2680	-19	93	65	292
Missoula WSO AP	46.92 N	114.08 W	3190	7792	1679	6-	88	61	658
Nebraska (NE)									
Chadron FAA AP	42.83 N	03.08 W	3312	7020	2692	N.A.	N.A.	N.A.	N.A.
Columbus	41.47 N	97.33 W	1450	6543	3345	N.A.	N.A.	N.A.	N.A.
Fremont	41.43 N	96.48 W	1180	6140	3421	N.A.	N.A.	N.A.	N.A.
Grand Island WSO AP	40.97 N	98.32 W	1841	6421	3243	8-	93	72	611
Hastings	40.58 N	98.35 W	1925	9059	3217	N.A.	N.A.	N.A.	N.A.
Kearney	40.73 N	99.02 W	2130	6548	3090	N.A.	N.A.	N.A.	N.A.
Lincoln WSO AP	40.85 N	96.75 W	1190	6278	3455	7-	94	74	N.A.
	14.00.04	100 58 W	0860	6115	326	< 2	7	< <u>7</u>	7

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(Nebraska cont.)									
Norfolk WSO AP	41.98 N	97.43 W	1551	6873	3072	-11	92	72	N.A.
North Platte WSO AP	41.13 N	100.68 W	2775	6889	2737	-10	92	69	592
Omaha (Eppley Field)	41.30 N	95.90 W	086	6300	3398	7-	92	75	N.A.
Scottsbluff WSO AP	41.87 N	103.60 W	3945	6229	2680	-11	92	64	620
Sidney	41.23 N	103.00 W	4,320	9969	2409	8-	92	63	N.A.
Nevada (NV)									
Carson City	39.15 N	W 777 M	4651	5691	2312	N.A.	N.A.	N.A.	N.A.
Elko FAA AP	40.83 N	115.78 W	5075	7077	2144	5-	92	59	695
Ely WSO AP	39.28 N	114.85 W	6262	7621	1717	9-	87	56	683
Las Vegas WSO AP	36.08 N	115.17 W	2162	2407	6745	27	106	99	719
Lovelock FAA AP	40.07 N	118.55 W	3900	6985	2886	N.A.	N.A.	N.A.	909
Reno WSFO AP	39.50 N	119.78 W	4404	5674	2504	∞	92	09	752
Tonopah AP	38.07 N	117.08 W	5426	5733	2840	7	92	57	099
Winnemucca WSO AP	40.90 N	117.80 W	4297	6315	2379	1	94	09	809
New Hampshire (NH)									
Berlin	44.45 N	71.18 W	930	8645	1718	N.A.	N.A.	N.A.	N.A.
Concord WSO AP	43.20 N	71.50 W	346	7554	2087	8-	87	70	683
Keene	42.92 N	72.27 W	480	6948	2398	N.A.	N.A.	N.A.	N.A.
Portsmouth/Pease AFB	43.08 N	70.82 W	102	6572	2418	4	85	70	N.A.
New Jersey (NJ)									
Atlantic City WSO AP	39.45 N	74.57 W	138	5169	3198	∞	88	73	N.A.
Long Branch Oakhurst	40.27 N	74.00 W	30	5253	3057	N.A.	N.A.	N.A.	N.A.
Newark WSO AP	40.70 N	74.17 W	30	4888	3748	10	06	73	644
New Mexico (NM)									
Alamogordo/Holloman	32.85 N	106.10 W	4094	3232	4726	20	96	63	N.A.
Albuquerque WSFO AP	35.05 N	106.62 W	5326	4425	3908	13	93	09	703
Artesia	32.77 N	104.38 W	3320	3527	4583	N.A.	N.A.	N.A.	N.A.
Carlsbad FAA AP	32.33 N	104.27 W	3232	2812	5512	19	86	99	N.A.
Clovis/Cannon AFB	34.38 N	103.32 W	4295	3983	4178	10	93	64	N.A.
Farmington	36.73 N	108.23 W	5502	5464	3307	∞	92	09	N.A.
Gallup FAA AP	35.52 N	108.78 W	6468	6244	2355	7	87	56	N.A.
	t t	107 00 W	0029	2002	2481	ΔN	۷ Z	V	< Z

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(New Mexico cont.)									
Hobbs	32.70 N	103.13 W	3615	2851	5160	N.A.	N.A.	N.A.	N.A.
Raton Filter Plant	36.92 N	104.43 W	6932	6103	2187	N.A.	N.A.	N.A.	N.A.
Roswell FAA AP	33.30 N	104.53 W	3669	3267	4962	14	96	65	677
Sосоно	34.08 N	106.88 W	4585	4074	3845	N.A.	N.A.	N.A.	N.A.
Tucumcari	35.20 N	103.68 W	4086	3912	4196	6	95	65	710
New York (NY)									
Albany WSFO AP	42.75 N	73.80 W	275	6894	2525	7-	98	70	909
Auburn	42.92 N	76.53 W	770	6782	2531	N.A.	N.A.	N.A.	N.A.
Batavia	42.98 N	78.18 W	068	2999	2536	N.A.	N.A.	N.A.	N.A.
Binghamton WSO AP	42.22 N	75.98 W	1600	7273	2193	-2	82	69	662
Buffalo WSCMO AP	42.93 N	78.73 W	705	6747	2468	2	84	69	269
Cortland	42.60 N	76.18 W	1129	7168	2225	N.A.	N.A.	N.A.	N.A.
Elmira/Chemung Co	42.17 N	76.90 W	951	6845	2420	-2	87	71	N.A.
Geneva Research Farm	42.88 N	77.03 W	718	6639	2364	N.A.	N.A.	N.A.	N.A.
Glens Falls FAA AP	43.35 N	73.62 W	321	7635	2182	-10	85	71	N.A.
Gloversville	43.05 N	74.35 W	812	7664	2118	N.A.	N.A.	N.A.	N.A.
Ithaca Cornell Univ	42.45 N	76.45 W	096	7207	2117	N.A.	N.A.	N.A.	N.A.
Lockport	43.18 N	78.65 W	520	6703	2482	N.A.	N.A.	N.A.	N.A.
Massena FAA AP	44.93 N	74.85 W	214	8255	2046	-15	84	71	627
NY Central Pk WSO City	40.78 N	73.97 W	132	4805	3634	N.A.	N.A.	N.A.	790
NY Kennedy WSO AP	40.65 N	73.78 W	16	5027	3342	111	88	72	N.A.
NY La Guardia WSO AP	40.77 N	73.90 W	11	4910	3547	13	68	73	790
Oswego East	43.47 N	76.50 W	350	6733	2431	N.A.	N.A.	N.A.	N.A.
Plattsburgh AFB	44.65 N	73.47 W	165	7837	2175	6-	83	69	N.A.
Poughkeepsie FAA AP	41.63 N	73.88 W	155	6391	2663	2	88	72	N.A.
Rochester WSO AP	43.12 N	W 79.77	547	6734	2406	1	98	71	809
Rome/Griffiss AFB	43.23 N	75.40 W	505	7244	2344	-5	98	70	N.A.
Schenectady	42.83 N	73.92 W	220	6881	2500	N.A.	N.A.	N.A.	N.A.
Syracuse WSO AP	43.12 N	76.12 W	421	6834	2399	-3	85	71	730
Utica	43.10 N	75.28 W	200	9902	2354	N.A.	N.A.	N.A.	N.A.
Watertown	N 23.97 N	75.87 W	497	7540	2294	-12	83	70	N.A.

TABLE D-1 US and US Territory Climatic Data (continued)

								Cooning Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9'66	1.0%	1.0%	55 < Tdb < 69
North Carolina (NC)									
Asheville WSO AP	35.43 N	82.55 W	2140	4308	3365	11	85	71	915
Charlotte WSO AP	35.22 N	80.93 W	700	3341	4704	18	91	74	777
Durham	36.03 N	W 78.97 W	406	3867	4159	N.A.	N.A.	N.A.	N.A.
Elizabeth City FAA AP	36.27 N	76.18 W	10	3139	4765	N.A.	N.A.	N.A.	N.A.
Fayetteville/Pope AFB	35.17 N	79.02 W	217	2917	5308	22	94	92	N.A.
Goldsboro	35.33 N	W 79.77	109	3040	5018	22	94	92	N.A.
Greensboro WSO AP	36.08 N	79.95 W	988	3865	4144	15	06	74	718
Greenville	35.62 N	77.38 W	30	3129	4824	N.A.	N.A.	N.A.	N.A.
Henderson	36.37 N	78.42 W	480	4038	4002	N.A.	N.A.	N.A.	N.A.
Hickory FAA AP	35.73 N	81.38 W	1143	3728	4199	18	91	72	N.A.
Jacksonville/New River	34.70 N	77.43 W	26	2456	8299	23	92	78	N.A.
Lumberton	34.70 N	W 79.07	130	3212	4723	N.A.	N.A.	N.A.	N.A.
New Bern FAA AP	35.07 N	77.05 W	18	2742	5262	22	92	78	N.A.
Raleigh-Durham WSFO AP	35.87 N	78.78 W	376	3457	4499	16	06	7.5	740
Rocky Mount	35.90 N	77.72 W	110	3321	4586	N.A.	N.A.	N.A.	N.A.
Wilmington WSO AP	34.27 N	W 06.77	72	2470	5557	23	91	78	N.A.
North Dakota (ND)									
Bismarck WSFO AP	46.77 N	100.77 W	1647	8968	2144	-21	06	29	556
Devils Lake KDLR	48.12 N	98.87 W	1464	0566	1973	-23	87	29	N.A.
Dickinson FAA AP	46.78 N	102.80 W	2581	8657	2152	N.A.	N.A.	N.A.	N.A.
Fargo WSO AP	46.90 N	W 08.96	006	9254	2289	-22	88	70	546
Grand Forks FAA AP	47.95 N	97.17 W	847	9733	2084	-20	88	69	N.A.
Jamestown FAA AP	46.92 N	W 89.86	1492	9168	2262	N.A.	N.A.	N.A.	N.A.
Minot FAA AP	48.27 N	101.28 W	1715	9193	2135	-20	88	99	581
Ohio (OH)									
Akron-Canton WSO AP	40.92 N	81.43 W	1208	6160	2779	0	85	7.1	089
Ashtabula	41.85 N	80.80 W	069	6459	2604	N.A.	N.A.	N.A.	N.A.
Bowling Green	41.38 N	83.62 W	675	6482	2876	N.A.	N.A.	N.A.	N.A.
Cambridge	40.02 N	81.58 W	800	5488	3118	N.A.	N.A.	N.A.	N.A.
Ciminati Abba WOO	30 15 M	W 52 10	092	4000	2723	V	8	31	~

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(Ohio cont.)									
Cleveland WSFO AP	41.42 N	81.87 W	770	6201	2755	1	98	72	N.A.
Columbus WSO AP	40.00 N	82.88 W	812	8029	3119	1	88	73	708
Dayton WSCMO AP	39.90 N	84.20 W	995	5708	3249	-1	88	73	611
Defiance	41.28 N	84.38 W	700	8628	2810	N.A.	N.A.	N.A.	N.A.
Findlay FAA AP	41.02 N	83.67 W	797	6302	2907	-2	87	72	N.A.
Fremont	41.33 N	83.12 W	009	6439	2823	N.A.	N.A.	N.A.	N.A.
Lancaster	39.73 N	82.63 W	098	8869	2935	N.A.	N.A.	N.A.	N.A.
Lima Sewage Plant	40.72 N	84.13 W	850	6253	3050	N.A.	N.A.	N.A.	N.A.
Mansfield WSO AP	40.82 N	82.52 W	1295	6258	2818	-1	85	72	N.A.
Marion	40.62 N	83.13 W	965	6407	2836	N.A.	N.A.	N.A.	N.A.
Newark Water Works	40.08 N	82.42 W	835	5657	3107	N.A.	N.A.	N.A.	N.A.
Norwalk	41.27 N	82.62 W	029	6434	2715	N.A.	N.A.	N.A.	N.A.
Portsmouth	38.75 N	82.88 W	540	4913	3581	N.A.	N.A.	N.A.	N.A.
Sandusky	41.45 N	82.72 W	584	6131	2986	N.A.	N.A.	N.A.	N.A.
Springfield New Wtr Wk	39.97 N	83.82 W	930	6254	2790	N.A.	N.A.	N.A.	N.A.
Steubenville	40.38 N	80.63 W	992	5700	3054	N.A.	N.A.	N.A.	N.A.
Toledo Express WSO AP	41.58 N	83.80 W	699	6259	2720	-2	87	72	652
Warren	41.20 N	80.82 W	006	6402	2546	N.A.	N.A.	N.A.	N.A.
Wooster Exp Station	40.78 N	81.92 W	1020	6379	2570	N.A.	N.A.	N.A.	N.A.
Youngstown WSO AP	41.25 N	80.67 W	1178	6544	2536	-1	85	70	629
Zanesville FAA AP	39.95 N	81.90 W	881	5714	3013	2	88	73	N.A.
Oklahoma (OK)									
Ada	34.78 N	W 89.96	1015	3182	5317	N.A.	N.A.	N.A.	N.A.
Altus AFB	34.65 N	99.27 W	1378	3151	8025	13	100	73	N.A.
Ardmore	34.20 N	97.15 W	098	2702	8265	N.A.	N.A.	N.A.	N.A.
Bartlesville	36.75 N	M 00.96	715	3777	4976	N.A.	N.A.	N.A.	N.A.
Chickasha Exp Station	35.05 N	97.92 W	1085	3366	5298	N.A.	N.A.	N.A.	N.A.
Enid	36.42 N	97.87 W	1245	3788	5119	S	86	74	N.A.
Lawton	34.62 N	98.45 W	1150	3457	5268	12	76	73	N.A.
McAlester FAA AP	34.88 N	95.78 W	092	3354	5233	10	96	92	N.A.
		05 22 W	583	2/13	5185	▼ Z	A N	A	× 7

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m.–4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(Oklahoma cont.)									
Norman	35.18 N	97.45 W	1109	3,295	5272	N.A.	N.A.	N.A.	N.A.
Oklahoma City WSFO AP	35.40 N	W 09.76	1280	3659	4972	6	96	74	733
Ponca City FAA AP	36.73 N	97.10 W	666	4226	4791	N.A.	N.A.	N.A.	N.A.
Seminole	35.23 N	W 79.96	865	3097	5552	N.A.	N.A.	N.A.	N.A.
Stillwater	36.12 N	97.10 W	895	4028	4718	N.A.	N.A.	N.A.	N.A.
Tulsa WSO AP	36.18 N	95.90 W	899	3691	5150	6	76	76	591
Woodward	36.45 N	99.38 W	1900	3900	4884	N.A.	N.A.	N.A.	N.A.
Oregon (OR)									
Astoria WSO AP	46.15 N	123.88 W	∞	5158	1437	25	72	62	1236
Baker FAA AP	44.83 N	117.82 W	3368	7155	1741	N.A.	N.A.	N.A.	N.A.
Bend	44.07 N	121.28 W	3660	6926	1405	N.A.	N.A.	N.A.	N.A.
Corvallis State Univ	44.63 N	123.20 W	225	4923	2051	N.A.	N.A.	N.A.	N.A.
Eugene WSO AP	44.12 N	123.22 W	364	4546	2354	21	87	65	N.A.
Grants Pass	42.42 N	123.33 W	096	4219	2986	N.A.	N.A.	N.A.	N.A.
Klamath Falls	42.20 N	121.78 W	4098	6634	1954	4	87	62	N.A.
Medford WSO AP	42.38 N	122.88 W	1300	4611	2989	21	95	99	749
Pendleton WSO AP	45.68 N	118.85 W	1492	5294	2787	8	93	63	N.A.
Portland WSFO AP	45.60 N	122.60 W	21	4522	2517	22	98	99	1060
Roseburg KQEN	43.20 N	123.35 W	465	4312	2607	N.A.	N.A.	N.A.	N.A.
Salem WSO AP	44.92 N	123.02 W	195	4927	2100	20	87	99	916
Pennsylvania (PA)									
Allentown WSO AP	40.65 N	75.43 W	388	5785	3028	S	88	72	710
Altoona FAA AP	40.30 N	78.32 W	1476	6140	2719	S	98	70	N.A.
Chambersburg	39.93 N	77.63 W	640	5574	3060	N.A.	N.A.	N.A.	N.A.
Erie WSO AP	42.08 N	80.18 W	732	6279	2652	2	83	70	716
Harrisburg FAA AP	40.22 N	76.85 W	338	5347	3358	6	68	73	648
Johnstown	40.33 N	78.92 W	1214	5649	3028	N.A.	N.A.	N.A.	N.A.
Lancaster	40.05 N	76.28 W	270	5584	3079	N.A.	N.A.	N.A.	N.A.
Meadville	41.63 N	80.17 W	1065	6934	2209	N.A.	N.A.	N.A.	N.A.
New Castle	41.02 N	80.37 W	825	6542	2502	N.A.	N.A.	N.A.	N.A.
Philadelphia WSCMO AP	39 88 N	75.23 W	10	4954	3623	11	68	74	646

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(Pennsylvania cont.)									
Pittsburgh WSCMO2 AP	40.50 N	80.22 W	1150	8969	2836	2	98	70	700
Reading	40.37 N	75.93 W	270	9625	3021	N.A.	N.A.	N.A.	N.A.
State College	40.80 N	77.87 W	1170	6364	2629	N.A.	N.A.	N.A.	N.A.
Uniontown	39.92 N	79.72 W	926	5684	2913	N.A.	N.A.	N.A.	N.A.
Warren	41.85 N	79.15 W	1210	0689	2334	N.A.	N.A.	N.A.	N.A.
West Chester	39.97 N	75.63 W	450	5283	3288	N.A.	N.A.	N.A.	N.A.
Williamsport WSO AP	41.25 N	76.92 W	524	2809	2796	2	87	71	N.A.
York Pump Station 22	39.92 N	76.75 W	390	5256	3274	N.A.	N.A.	N.A.	N.A.
Rhode Island (RI)									
Newport	41.52 N	71.32 W	20	6595	2548	N.A.	N.A.	N.A.	N.A.
Providence WSO AP	41.73 N	71.43 W	51	5884	2743	S	98	71	684
South Carolina (SC)									
Anderson	34.53 N	82.67 W	800	2965	4900	N.A.	N.A.	N.A.	N.A.
Charleston WSO AP	32.90 N	80.03 W	41	2013	6188	N.A.	N.A.	N.A.	N.A.
Charleston WSO City	32.78 N	79.93 W	10	1866	6303	25	92	77	N.A.
Columbia WSFO AP	33.95 N	81.12 W	213	2649	5508	21	94	7.5	705
Florence FAA AP	34.18 N	79.72 W	146	2585	5597	23	94	92	N.A.
Georgetown	33.35 N	79.25 W	10	2081	5947	N.A.	N.A.	N.A.	N.A.
Greenville-Spartanburg WSO AP	34.90 N	82.22 W	973	3272	4625	19	91	74	851
Greenwood	34.17 N	82.20 W	615	3288	4673	N.A.	N.A.	N.A.	N.A.
Orangeburg	33.50 N	80.87 W	160	2534	5477	N.A.	N.A.	N.A.	N.A.
Spartanburg	34.98 N	81.88 W	840	2887	5046	N.A.	N.A.	N.A.	N.A.
Sumter/Shaw AFB	33.97 N	80.48 W	240	2506	5453	24	93	7.5	N.A.
South Dakota (SD)									
Aberdeen WSO AP	45.45 N	98.43 W	1296	8446	2497	N.A.	N.A.	N.A.	N.A.
Brookings	44.32 N	W 77.96	1642	8653	2228	N.A.	N.A.	N.A.	N.A.
Huron WSO AP	44.38 N	98.22 W	1282	7923	2709	-17	91	7.1	545
Mitchell	43.72 N	W 00.86	1274	7558	2925	N.A.	N.A.	N.A.	N.A.
Pierre FAA AP	44.38 N	100.28 W	1726	7411	2938	-14	95	69	557
Rapid City WSO AP	44.05 N	103.07 W	3162	7301	2412	-11	91	65	572
G \ \ \Cap\ta_1 \cdot \ \Cap\ta_2 \ta_3 \cdot \ \Cap\ta_3 \cdot \ \Cap\ta_4 \cdot \ \Cap\ta_5 \cdot \Cap\ta_5 \cdot \ \Cap\ta_5 \cdot \cdot \ \Cap\ta_5 \cdot \cdo	IN 72 CV	W 27 W	1418	7800	2735	16	00	17	000

TABLE D-1 US and US Territory Climatic Data (continued)

State City (South Dakota, cont.) Watertown FAA AP Yankton						Heating Design		coung resign remperature	No. Hrs.
City (South Dakota, cont.) Watertown FAA AP Yankton	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Wet-Bulb	8 a.m4 p.m.
(South Dakota, cont.) Watertown FAA AP Yankton		b							
(South Dakota, cont.) Watertown FAA AP Yankton						%9.66	1.0%	1.0%	55 < Tdb < 69
Watertown FAA AP Yankton									
Yankton	44.92 N	97.15 W	1746	8375	2499	N.A.	N.A.	N.A.	N.A.
	42.88 N	97.35 W	1180	7304	2935	N.A.	N.A.	N.A.	N.A.
Tennessee (TN)									
Athens	35.43 N	84.58 W	940	4054	4040	N.A.	N.A.	N.A.	N.A.
Bristol WSO AP	36.48 N	82.40 W	1525	4406	3621	6	87	72	N.A.
Chattanooga WSO AP	35.03 N	85.20 W	692	3587	4609	15	92	75	684
Clarksville Sew Plt	36.55 N	87.37 W	382	4159	4241	N.A.	N.A.	N.A.	N.A.
Columbia	35.63 N	87.08 W	059	4206	4047	N.A.	N.A.	N.A.	N.A.
Dyersburg FAA AP	36.02 N	89.40 W	337	3536	5010	N.A.	N.A.	N.A.	N.A.
Greeneville Exp Stn	36.10 N	82.85 W	1320	4392	3710	N.A.	N.A.	N.A.	N.A.
Jackson FAA AP	35.60 N	88.92 W	433	3540	4915	12	93	92	N.A.
Knoxville WSO AP	35.80 N	84.00 W	949	3937	4164	13	06	74	703
Memphis FAA-AP	35.05 N	W 00.00	265	3082	5467	16	94	77	851
Murfreesboro	35.92 N	86.37 W	550	3992	4270	N.A.	N.A.	N.A.	N.A.
Nashville WSO AP	36.12 N	86.68 W	580	3729	4689	10	92	7.5	749
Tullahoma	35.35 N	86.20 W	1048	3630	4422	N.A.	N.A.	N.A.	N.A.
Texas (TX)									
Abilene WSO AP	32.42 N	W 89.66	1784	2584	0509	16	26	71	648
Alice	27.73 N	W 70.86	201	1062	8121	N.A.	N.A.	N.A.	N.A.
Amarillo WSO AP	35.23 N	101.70 W	3590	4258	4128	9	94	99	089
Austin WSO AP	30.30 N	W 07.70	265	1688	7171	25	96	74	664
Bay City Waterworks	28.98 N	W 86.59	52	1370	7211	N.A.	N.A.	N.A.	N.A.
Beaumont Research Ctr	30.07 N	94.28 W	27	1677	6703	29	92	79	N.A.
Beeville	28.45 N	97.70 W	255	1372	7393	28	86	77	N.A.
Big Spring	32.25 N	101.45 W	2500	2772	5621	N.A.	N.A.	N.A.	N.A.
Brownsville WSO AP	25.90 N	97.43 W	19	635	8777	36	94	77	422
Brownwood	31.72 N	W 00.66	1385	2199	6479	N.A.	N.A.	N.A.	N.A.
Corpus Christi WSO AP	27.77 N	97.50 W	44	1016	8023	32	94	78	543
Corsicana	32.08 N	96.47 W	425	2396	6133	N.A.	N.A.	N.A.	N.A.
Dallas FAA AP	32.85 N	96.85 W	440	2259	6587	17	86	74	N.A.
Del Rio/Laughlin AFB	29.37 N	100.78 W	1079	1565	7207	28	86	73	732

TABLE D-1 US and US Territory Climatic Data (continued)

							Coung Desig	coung reagn remperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(Texas cont.)									
Denton	33.20 N	97.10 W	630	2665	5816	N.A.	N.A.	N.A.	N.A.
Eagle Pass	28.70 N	100.48 W	805	1441	7682	N.A.	N.A.	N.A.	N.A.
El Paso WSO AP	31.80 N	106.40 W	3918	2708	5488	21	86	64	735
Ft Worth/Meacham	32.82 N	97.35 W	692	2304	6557	19	86	74	N.A.
Galveston WSO City	29.30 N	94.80 W	7	1263	7378	N.A.	N.A.	N.A.	N.A.
Greenville	33.20 N	96.22 W	610	2953	5527	N.A.	N.A.	N.A.	N.A.
Harlingen	26.20 N	W 79.76	38	813	8405	N.A.	N.A.	N.A.	N.A.
Houston /Hobby	29.65 N	95.28 W	50	1371	7357	29	93	77	N.A.
Houston-Bush Intercontinental Airport	29.97 N	95.35 W	96	1599	9289	27	94	77	N.A.
Huntsville	30.72 N	95.55 W	464	1862	<i>L</i> 699	N.A.	N.A.	N.A.	N.A.
Killeen/Robert-Gray	31.07 N	97.83 W	1014	2127	6477	20	96	73	N.A.
Lamesa	32.70 N	101.93 W	2965	3159	5107	N.A.	N.A.	N.A.	N.A.
Laredo	27.57 N	99.50 W	430	1025	8495	32	101	74	869
Longview	32.47 N	94.73 W	330	2433	5920	N.A.	N.A.	N.A.	N.A.
Lubbock WSFO AP	33.65 N	101.82 W	3254	3431	4833	11	95	29	743
Lufkin FAA AP	31.23 N	94.75 W	281	1951	6527	23	95	77	681
McAllen	26.20 N	98.22 W	122	778	8597	34	86	92	N.A.
Midland/Odessa WSO AP	31.95 N	102.18 W	2857	2751	5588	17	76	29	729
Mineral Wells FAA AP	32.78 N	W 70.86	934	2625	6015	N.A.	N.A.	N.A.	N.A.
Palestine	31.78 N	95.60 W	465	2005	6454	N.A.	N.A.	N.A.	N.A.
Pampa No 2	35.53 N	100.98 W	3250	4358	4131	N.A.	N.A.	N.A.	N.A.
Pecos	31.42 N	103.50 W	2610	2505	5992	N.A.	N.A.	N.A.	N.A.
Plainview	34.18 N	101.70 W	3370	3717	4462	N.A.	N.A.	N.A.	N.A.
Port Arthur WSO AP	29.95 N	94.02 W	16	1499	6994	N.A.	N.A.	N.A.	269
San Angelo WSO AP	31.37 N	100.50 W	1903	2414	0209	20	76	70	619
San Antonio WSFO	29.53 N	98.47 W	794	1644	7142	26	96	73	N.A.
Sherman	33.63 N	96.62 W	720	2890	5682	N.A.	N.A.	N.A.	721
Snyder	32.72 N	100.92 W	2335	3185	5178	N.A.	N.A.	N.A.	N.A.
Temple	31.08 N	97.37 W	200	2153	6487	N.A.	N.A.	N.A.	N.A.
Tyler	32.35 N	95.40 W	545	2194	6562	N.A.	N.A.	N.A.	N.A.
Vernon	34 08 N	99.30 W	1202	3186	5005	A Z	Z	V	N

(continued)
Climatic Data
US and US Territory
TABLE D-1

							Cooling Design	Cooling Design Temperature	
State	;	,	i	,		Heating Design	Dry-Bulb	Wet-Bulb	No. Hrs.
City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature			8 a.m4 p.m.
						99.6%	1.0%	1.0%	55 < Tdb < 69
(Texas cont.)									
Victoria WSO AP	28.85 N	96.92 W	104	1296	7507	29	94	92	N.A.
Waco WSO AP	31.62 N	97.22 W	200	2179	8999	22	66	75	622
Wichita Falls WSO AP	33.97 N	98.48 W	994	3042	5717	N.A.	N.A.	N.A.	723
Utah (UT)									
Cedar City FAA AP	37.70 N	113.10 W	5610	5965	2770	2	91	59	629
Logan Utah State Univ	41.75 N	111.80 W	4790	6854	2541	N.A.	N.A.	N.A.	N.A.
Moab	38.60 N	109.60 W	3965	4494	4356	N.A.	N.A.	N.A.	N.A.
Ogden Sugar Factory	41.23 N	112.03 W	4280	5950	3053	N.A.	N.A.	N.A.	N.A.
Richfield Radio KSVC	38.77 N	112.08 W	5270	6367	2300	N.A.	N.A.	N.A.	N.A.
Saint George	37.10 N	113.57 W	2760	3215	5424	N.A.	N.A.	N.A.	N.A.
Salt Lake City NWSFO	40.78 N	111.95 W	4222	5765	3276	9	94	62	586
Vernal Airport	40.45 N	109.52 W	5260	7562	2334	N.A.	N.A.	N.A.	N.A.
Vermont (VT)									
Burlington WSO AP	44.47 N	73.15 W	332	7771	2228	-11	84	69	637
Rutland	43.60 N	72.97 W	620	9902	2345	N.A.	N.A.	N.A.	N.A.
Virginia (VA)									
Charlottesville	38.03 N	78.52 W	870	4224	3902	N.A.	N.A.	N.A.	N.A.
Danville-Bridge St	36.58 N	79.38 W	410	3944	4236	N.A.	N.A.	N.A.	N.A.
Fredericksburg Natl Pk	38.32 N	77.45 W	06	4554	3754	N.A.	N.A.	N.A.	N.A.
Lynchburg WSO AP	37.33 N	79.20 W	916	4340	3728	12	06	74	N.A.
Norfolk WSO AP	36.90 N	76.20 W	22	3495	4478	20	91	92	989
Richmond WSO AP	37.50 N	77.33 W	164	3963	4223	14	92	75	716
Roanoke WSO AP	37.32 N	W 79.97	1149	4360	3715	12	68	72	713
Staunton Sewage Plant	38.15 N	79.03 W	1385	5273	3004	N.A.	N.A.	N.A.	N.A.
Winchester	39.18 N	78.12 W	089	5269	3215	N.A.	N.A.	N.A.	N.A.
Washington (WA)									
Aberdeen	46.97 N	123.82 W	10	5285	1488	N.A.	N.A.	N.A.	N.A.
Bellingham FAA AP	48.80 N	122.53 W	149	6095	1508	15	92	64	N.A.
Bremerton	47.57 N	122.67 W	162	5119	1839	N.A.	N.A.	N.A.	N.A.
Ellensburg	46.97 N	120.55 W	1480	0249	6661	N.A.	N.A.	N.A.	N.A.
Evereff	47.98 N	122.18 W	09	5311	1660	N.A.	N.A.	N.A.	N.A.

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(Washington cont.)									
Kennewick	46.22 N	W 01.911	390	4895	3195	N.A.	N.A.	N.A.	N.A.
Longview	46.15 N	122.92 W	12	5094	1858	N.A.	N.A.	N.A.	N.A.
Olympia WSO AP	46.97 N	122.90 W	192	5655	1558	18	83	65	586
Port Angeles	48.12 N	123.40 W	40	2692	1257	N.A.	N.A.	N.A.	N.A.
Seattle EMSU WSO	47.65 N	122.30 W	20	4611	2120	N.A.	N.A.	N.A.	N.A.
Seattle-Tacoma WSCMO AP	47.45 N	122.30 W	450	4908	2021	23	81	64	982
Spokane WSO AP	47.63 N	117.53 W	2356	6842	2032	N.A.	N.A.	N.A.	640
Tacoma/McChord AFB	47.15 N	122.48 W	322	5155	1820	18	82	63	N.A.
Walla Walla FAA AP	46.10 N	118.28 W	1166	4958	3161	4	95	65	N.A.
Wenatchee	47.42 N	120.32 W	640	5579	2956	3	92	65	N.A.
Yakima WSO AP	46.57 N	120.53 W	1064	2962	2348	4	92	64	703
West Virginia (WV)									
Beckley WSO AP	37.78 N	81.12 W	2504	5558	2690	N.A.	N.A.	N.A.	N.A.
Bluefield FAA AP	37.30 N	81.22 W	2870	5230	2907	S	83	69	N.A.
Charleston WSFO AP	38.37 N	81.60 W	1015	4646	3655	9	88	73	704
Clarksburg	39.27 N	80.35 W	945	5512	3014	N.A.	N.A.	N.A.	N.A.
Elkins WSO AP	38.88 N	79.85 W	1992	6120	2360	-2	83	70	N.A.
Huntington WSO AP	38.37 N	82.55 W	827	4665	3615	9	68	73	N.A.
Martinsburg FAA AP	39.40 N	W 86.77	531	5192	3368	8	91	73	N.A.
Morgantown FAA AP	39.65 N	79.92 W	1240	5363	3155	4	87	71	N.A.
Parkersburg	39.27 N	81.57 W	615	5094	3507	4	88	72	N.A.
Wisconsin (WI)									
Appleton	44.25 N	88.37 W	750	7693	2513	N.A.	N.A.	N.A.	N.A.
Ashland Exp Farm	46.57 N	W 76.06	059	0968	1811	N.A.	N.A.	N.A.	N.A.
Beloit	42.50 N	89.03 W	780	7161	2737	N.A.	N.A.	N.A.	N.A.
Eau Claire FAA AP	44.87 N	91.48 W	888	8330	2407	-18	87	71	661
Fond du Lac	43.80 N	88.45 W	092	7541	2573	N.A.	N.A.	N.A.	N.A.
Green Bay WSO AP	44.48 N	88.13 W	682	6808	2177	-13	85	72	651
La Crosse FAA AP	43.87 N	91.25 W	651	7491	2790	-14	88	73	644
Madison WSO AP	43.13 N	89.33 W	858	191	2389	-11	87	72	658
Monitorio	10 10 N	W 87 68 W	099	7507	2193	N N	Ϋ́	Ϋ́	A Z

TABLE D-1 US and US Territory Climatic Data (continued)

							Cooling Desig	Cooling Design Temperature	
State City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Dry-Bulb	Wet-Bulb	No. Hrs. 8 a.m4 p.m.
						%9.66	1.0%	1.0%	55 < Tdb < 69
(Wisconsin cont.)									
Marinette	45.10 N	87.63 W	909	8059	2272	N.A.	N.A.	N.A.	N.A.
Milwaukee WSO AP	42.95 N	W 06.78	672	7324	2388		98	72	618
Racine	42.70 N	87.77 W	595	7167	2459	N.A.	N.A.	N.A.	N.A.
Sheboygan	43.75 N	87.72 W	648	7807	2390	N.A.	N.A.	N.A.	N.A.
Stevens Point	44.50 N	89.57 W	1079	6008	2325	N.A.	N.A.	N.A.	N.A.
Waukesha	43.02 N	88.23 W	098	7117	2658	N.A.	N.A.	N.A.	N.A.
Wausau FAA AP	44.92 N	89.62 W	1196	8427	2182	-15	85	70	N.A.
Wyoming (WY)									
Casper WSO AP	42.92 N	106.47 W	5338	7682	2082	-13	68	58	535
Cheyenne WSFO AP	41.15 N	104.82 W	6120	7326	1886	7-	85	57	809
Cody	44.52 N	W 109.07 W	5050	7431	2057	-14	87	58	N.A.
Evanston	41.27 N	110.95 W	6810	8846	1285	N.A.	N.A.	N.A.	N.A.
Lander WSO AP	42.82 N	108.73 W	5370	7889	2184	-14	87	58	N.A.
Laramie FAA AP	41.32 N	105.68 W	7266	8006	1237	N.A.	N.A.	N.A.	N.A.
Newcastle	43.85 N	104.22 W	4410	7267	2518	N.A.	N.A.	N.A.	N.A.
Rawlins FAA AP	41.80 N	107.20 W	6736	8475	1605	N.A.	N.A.	N.A.	N.A.
Rock Springs FAA AP	41.60 N	W 109.07	6741	8365	1734	6-	84	54	552
Sheridan WSO AP	44.77 N	106.97 W	3964	7804	2023	-14	06	61	574
Torrington Exp Farm	42.08 N	104.22 W	4098	6289	2429	N.A.	N.A.	N.A.	N.A.
District of Columbia (DC)									
R. Reagan Nat'l. Airport	38.85 N	77.03 W	99	4047	4391	15	92	92	759
Puerto Rico (PR)									
San Juan/Isla Verde WSFO	18.43 N	W 00.99	10	0	11,406	69	06	78	N.A.
Pacific Islands (PI)									
Guam (GU) - Andersen AFB	13.58 N	144.93 E	361	0	10,690	74	87	79	N.A.
Marshall Island (MH) - Kwajalein Atoll	8.73 N	167.73 E	26	0	11,670	92	88	79	N.A.
Midway Island (MH) - Midway Island NAF	28.22 N	177.37 W	13	134	8323	59	98	75	N.A.
Samoa (WS) - Pago Pago WSO Airport	14.33 S	170.72 W	6	0	11,018	72	88	80	N.A.
Wake Island - Wake Island WSO Airport	19.28 N	166.65 E	12	0	11,097	71	68	62	N.A.
Philippines									
Philippines (PH) - Angeles, Clark AFB	15.18 N	120.55 E	475	0	11,280	89	95	77	N.A.

limatic Data	
Canadian C	
TABLE D-2	

Province Cite.	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooling Design Dry-Bulb	Cooling Design Temperature Dry-Bulb Wet-Bulb
(III)						%9.66	1.0%	1.0%
Alberta (AB)								
Calgary International A	51.12 N	114.02 W	3533	5886	1167	-22	80	65
Edmonton International A	53.30 N	113.58 W	2345	11,023	1069	-28.1	78	62
Grande Prairie A	55.18 N	118.88 W	2185	11,240	1031	-32	78	09
Jasper	52.88 N	118.07 W	3480	10,244	848	N.A.	N.A.	N.A.
Lethbridge A	49.63 N	112.80 W	3047	8783	1730	-22	84	61
Medicine Hat A	50.02 N	110.72 W	2352	8868	1981	-24	87	62
Red Deer A	52.18 N	113.90 W	2969	10,765	1095	-27	42	61
British Columbia (BC)								
Dawson Creek A	55.73 N	120.18 W	2148	11,435	068	N.A.	N.A.	N.A.
Ft Nelson A	58.83 N	122.58 W	1253	12,941	1013	-33	78	09
Kamloops	S0.67 N	120.33 W	1243	6229	2335	8-	88	63
Nanaimo A	49.05 N	123.87 W	86	6054	1469	N.A.	N.A.	N.A.
New Westminster BC Pen	49.22 N	122.90 W	59	5520	1691	N.A.	N.A.	N.A.
Penticton A	49.47 N	119.60 W	1128	9059	2002	5	87	2
Prince George	53.88 N	122.67 W	2267	9495	906	-25	78	59
Prince Rupert A	54.30 N	130.43 W	1111	7650	572	7	63	57
Vancouver International A	49.18 N	123.17 W	6	5682	1536	18	74	4
Victoria Gonzales Hts	48.42 N	123.32 W	229	5494	1286	23	75	62
Manitoba (MB)								
Brandon CDA	49.87 N	W 86.99	1190	10,969	1661	-29	84	99
Churchill A	58.73 N	94.07 W	91	16,719	275	-36	72	09
Dauphin A	51.10 N	100.05 W	1000	11,242	1520	-28	84	99
Flin Flon	54.77 N	101.85 W	1099	12,307	1352	N.A.	N.A.	N.A.
Portage La Prairie A	49.90 N	98.27 W	885	10,594	1807	-25	85	29
The Pas A	53.97 N	101.10 W	688	12,490	1231	-32	62	2
Winnipeg International A	49.90 N	97.23 W	784	10,858	1784	-27	84	29
New Brunswick (NB)								
Chatham A	47.02 N	65.45 W	1111	9058	1531	-12	83	29
Fredericton A	45.87 N	66.53 W	55	9998	1631	-12	83	89
Moncton A	46.12 N	64.68 W	232	8731	1427	-10	80	29
Saint John A	45.33 N	65.88 W	337	8776	1179	6-	75	49
Newfoundland (NF)								
Corner Brook	48.95 N	57.95 W	16	8756	1075	N.A.	N.A.	N.A.

TABLE D-2 Canadian Climatic Data (continued)

Province City	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooming Design remperature Dry-Bulb Wet-Bulb	Wet-Bulb
						%9.66	1.0%	1.0%
(Newfoundland cont.)								
Gander International A	48.95 N	54.57 W	495	9354	956	4	92	63
Goose A	53.32 N	60.42 W	150	12,017	758	-23	77	61
St John's A	47.62 N	52.73 W	439	8888	848	3	73	49
Stephenville A	48.53 N	58.55 W	26	6988	952	-2	7.1	49
Northwest Territories (NW)								
Ft Smith A	60.02 N	111.95 W	999	14,192	932	-34	78	61
Inuvik A	68.30 N	133.48 W	193	18,409	489	4	75	59
Yellowknife A	62.47 N	114.45 W	672	15,555	851	-39	74	59
Nova Scotia (NS)								
Halifax International A	44.88 N	63.52 W	416	8133	1464	-2	78	99
Kentville CDA	45.07 N	64.48 W	160	7683	1665	N.A.	N.A.	N.A.
Sydney A	46.17 N	60.05 W	183	8364	1287	-1	78	29
Truro	45.37 N	63.27 W	131	8596	1295	6-	77	29
Yarmouth A	43.83 N	W 80.99	141	7515	1180	7	7.1	29
Nunavut								
Resolute A	74.72 N	94.98 W	219	22,864	0	42	48	43
Ontario (ON)								
Belleville	44.15 N	77.40 W	249	7556	2252	N.A.	N.A.	N.A.
Cornwall	45.02 N	74.75 W	209	8062	2187	N.A.	N.A.	N.A.
Hamilton RBG	43.28 N	W 88.67	334	6872	2450	N.A.	N.A.	N.A.
Kapuskasing A	49.42 N	82.47 W	744	11,742	1108	-30	80	99
Kenora A	49.78 N	94.37 W	1335	10,884	1626	-27	81	65
Kingston A	44.22 N	76.60 W	305	7826	1960	N.A.	N.A.	N.A.
London A	43.03 N	81.15 W	912	7565	2126	-3	83	70
North Bay A	46.35 N	79.43 W	1174	9794	1509	-18	78	99
Oshawa WPCP	43.87 N	78.83 W	275	7253	2106	N.A.	N.A.	N.A.
Ottawa International A	45.32 N	75.67 W	380	8571	2045	-13	83	69
Owen Sound MOE	44.58 N	80.93 W	587	7730	1896	N.A.	N.A.	N.A.
Peterborough	44.28 N	78.32 W	636	8037	1975	N.A.	N.A.	N.A.
St Catharines	43.20 N	79.25 W	298	0029	2564	N.A.	N.A.	N.A.
Sudbury A	46.62 N	80.80 W	1141	0666	1557	-19	81	99
Thunder Bay A	48.37 N	89.32 W	652	10,562	1198	-22	80	99
Timmins A	A8 57 N	81.37 W	296	11.374	1225	-28	8	59

TABLE D-2 Canadian Climatic Data (continued)

Province	I offitido	Longitudo	Flox 6	HDD65	Conso	Temperature	Dry-Bulb	Dry-Bulb Wet-Bulb
City		anna anna anna anna anna anna anna ann	114., 11			%9.66	1.0%	1.0%
(Ontario cont.)								
Toronto Downsview A	43.75 N	79.48 W	649	7306	2370	4	84	70
Windsor A	42.27 N	82.97 W	623	6199	2679	2	98	71
Prince Edward Island (PE)								
Charlottetown A	46.28 N	63.13 W	157	8658	1400	9-	77	29
Summerside A	46.43 N	63.83 W	78	8411	1536	₹-	77	99
Québec (PQ)								
Bagotville A	48.33 N	71.00 W	521	10,603	1300	-23	80	99
Drummondville	45.88 N	72.48 W	269	8601	2024	N.A.	N.A.	N.A.
Granby	45.38 N	72.70 W	551	8367	1984	N.A.	N.A.	N.A.
Montreal Dorval International A	45.47 N	73.75 W	101	8285	2146	-12	83	70
Québec City A	46.80 N	71.38 W	229	9449	1571	-16	80	89
Rimouski	48.45 N	68.52 W	118	5996	1215	N.A.	N.A.	N.A.
Sept-Iles A	50.22 N	66.27 W	180	11,287	069	-20	69	59
Shawinigan	46.57 N	72.75 W	400	9246	1720	N.A.	N.A.	N.A.
Sherbrooke A	45.43 N	71.68 W	780	9464	1372	-20	80	89
St Jean de Cherbourg	48.88 N	67.12 W	1151	11,277	801	N.A.	N.A.	N.A.
St Jerome	45.80 N	74.05 W	557	9171	1771	N.A.	N.A.	N.A.
Thetford Mines	46.10 N	71.35 W	1250	2896	1425	N.A.	N.A.	N.A.
Trois Rivieres	46.37 N	72.60 W	173	9124	1766	N.A.	N.A.	N.A.
Val d'Or A	48.07 N	77.78 W	1105	11,256	1193	-27	80	92
Valleyfield	45.28 N	74.10 W	150	8083	2268	N.A.	N.A.	N.A.
Saskatchewan (SK)								
Estevan A	49.22 N	102.97 W	1876	10,092	1793	-25	98	99
Moose Jaw A	50.33 N	105.55 W	1893	6866	1812	-27	87	2
North Battleford A	52.77 N	108.25 W	1797	11,127	1473	-31	82	63
Prince Albert A	53.22 N	105.68 W	1404	12,009	1252	-34	81	2
Regina A	50.43 N	104.67 W	1893	10,773	1620	-29	85	2
Saskatoon A	52.17 N	106.68 W	1643	11,118	1537	-31	84	63
Swift Current A	50.28 N	107.68 W	2683	10,128	1541	-25	84	62
Yorkton A	51.27 N	102.47 W	1633	11,431	1476	-30	82	2
Yukon Territory (YT)								
Whitehores A	N CE 07	135 07 W	2306	12 797	611	-34	73	55

TABLE D-3 International Climatic Data

Country	Province or Region	Latitude	Longitude	itude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooing Design Temperature Dry-Bulb Wet-Bulb	Wet-Bulb
City	Negron							%9.66	1.0%	1.0%
Argentina										
Buenos Aires/Ezeiza		34.82 S	58.53	×	99	2211	4693	31	06	72
Cordoba		31.32 S	64.22	W	1555	1816	5182	31	91	72
Tucuman/Pozo		26.85 S	65.10	M	1444	1416	6622	N.A.	N.A.	N.A.
Australia										
Adelaide	SA	34.95 S	138.53	3 E	20	2082	4381	39	92	64
Alice Springs	NT	23.80 S	133.90) E	1782	1142	7777	34	102	64
Brisbane	TÒ	27.43 S	153.08	3 E	7	545	6002	4	98	72
Darwin Airport	NT	12.43 S	130.87	7 E	95	0	11,736	2	92	92
Perth/Guildford	WA	31.92 S	115.97	7 E	56	1507	5353	41	95	99
Sydney/K Smith	NSW	33.95 S	151.18	3 E	20	1351	5259	42	85	29
Azores										
Lajes	Terceira	38.75 N	1 27.08	W	180	1279	4892	46	78	71
Bahamas										
Nassau		25.05 N	77.47	M	10	29	9775	57	06	78
Belgium										
Brussels Airport		S0.90 N	1 4.47	E	128	5460	1862	15	62	99
Bermuda										
St Georges/Kindley		32.37 N	64.68	×	20	170	8365	N.A.	N.A.	N.A.
Bolivia										
La Paz/El Alto		16.50 S	68.18	W	13,287	7189	237	25	62	44
Brazil										
Belem		1.43 S	48.48	M	79	0	11,552	72	06	78
Brasilia		15.77 S	47.93	W	3809	58	7943	48	88	99
Fortaleza		3.72 S	38.55	W	62	1	11,748	72	06	78
Porto Alegre		30.08 S	51.18	M	23	902	9/0/	40	92	75
Recife/Curado		8.13 S	34.92	W	36	2	10,951	70	91	78
Rio de Janeiro		22.90 S	43.17	W	16	14	8896	59	66	77
Salvador/Ondina		13.00 S	38.52	W	167	0	10,785	89	88	78
Sao Paulo		23.50 S	46.62	A	2608	447	7219	48	88	69
Bulgaria										
Sofia		42.82 N	23.38	日	1952	5629	2508	10	85	99
Chile										
Concepcion		36.77 S	73.05	A	39	3559	2283	35	74	62
Punta Arenas/Chabunca		53 03 8	30.00	111	001	10001	u G	8	ζ	Č

TABLE D-3 International Climatic Data (continued)

City	Province or	Latitude		Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooling Design Dry-Bulb	Cooling Design Temperature Dry-Bulb Wet-Bulb
	Togo,							%9.66	1.0%	1.0%
(Chile cont.)										
Santiago/Pedahuel		33.38 S	70.88	8 W	1575	2820	3471	29	88	65
China										
Beijing/Peking	Municipalities	39.93 N	116.28	8 E	180	5252	4,15	12	92	72
Cangzhou	Municipalities	38.33 N	116.83	3 E	36	4888	4504	14	92	74
Hong Kong Intl Arpt	Special Admin. Region	22.33 N	114.18	8 E	62	543	7894	48	91	62
Shanghai	Municipalities	31.40 N	121.47	.7 E	13	3182	5124	29	92	80
Shanghai/Hongqiao	Municipalities	31.17 N	121.43	3 E	23	3184	5127	26	92	82
Tianjin/Tientsin	Municipalities	39.10 N	117.17	7 E	16	4948	4450	14	91	74
Anqing	Anhui	30.53 N	117.05	5 E	99	3093	5476	28	94	80
Bengbu	Anhui	32.95 N	117.37	7 E	72	3,44	5053	23	93	62
Fuyang	Anhui	32.93 N	115.83	3 E	128	3639	5004	23	93	42
Hefei/Luogang	Anhui	31.87 N	117.23	3 E	118	3468	5110	25	93	80
Huang Shan (Mtns)	Anhui	30.13 N	118.15	5 E	6024	6723	1647	6	70	99
Huoshan	Anhui	31.40 N	116.33	3 E	223	3516	4907	24	94	80
Changting	Fujian	25.85 N	116.37	7 E	1020	1902	6889	30	91	77
Fuding	Fujian	27.33 N	120.20	0 E	125	1868	6277	34	92	80
Fuzhou	Fujian	26.08 N	119.28	8 E	279	1396	7047	40	94	80
Jiuxian Shan	Fujian	25.72 N	118.10	0 E	5417	3923	2763	23	74	29
Longyan	Fujian	25.10 N	117.02	2 E	1119	1120	7248	37	93	75
Nanping	Fujian	26.65 N	118.17	7 E	420	1551	9869	35	95	78
Pingtan	Fujian	25.52 N	119.78	8 E	102	1478	0559	43	87	79
Pucheng	Fujian	27.92 N	118.53	3 E	902	2325	5940	29	93	78
Shaowu	Fujian	27.33 N	117.43	3 E	630	2075	6232	29	94	78
Xiamen	Fujian	24.48 N	118.08	8 E	456	1014	7,26	43	91	79
Yong'An	Fujian	25.97 N	117.35	5 E	699	1570	6917	33	95	77
Dunhuang	Gansu	40.15 N	94.68	8 E	3740	6531	3272	1	93	64
Hezuo	Gansu	35.00 N	102.90	0 E	9547	0926	491	-5	70	54
Huajialing	Gansu	35.38 N	105.00	0 E	8038	9275	871	4	70	99
Jiuquan/Suzhou	Gansu	39.77 N	1 98.48	8 E	4849	7316	2473	-2	98	62
Lanzhou	Gansu	36.05 N	103.88	8 E	4980	5849	2954	11	87	63
Mazong Shan (Mount)	Gansu	41.80 N	1 97.03	3 E	5807	9187	1748	6-	84	55
Minqin	Gansu	38.63 N	103.08	8 E	4485	7045	2830	0	68	61

TABLE D-3 International Climatic Data (continued)

							Hotting Decision	Cooling Design Temporature	Tomporature
Country City	Province or Region	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Wet-Bulb
)						%9.66	1.0%	1.0%
(China cont.)									
Pingliang	Gansu	35.55 N	106.67 E	4423	6248	2407	6	84	64
Ruo'ergai	Gansu	33.58 N	102.97 E	11,289	10,826	232	8-	65	52
Tianshui	Gansu	34.58 N	105.75 E	3750	5192	3073	17	87	29
Wudu	Gansu	33.40 N	104.92 E	3540	3419	4250	28	06	89
Wushaoling (Pass)	Gansu	37.20 N	102.87 E	2866	11,697	263	<u>-</u>	4	50
Xifengzhen	Gansu	35.73 N	107.63 E	4669	6471	2388	10	82	63
Yumenzhen	Gansu	40.27 N	97.03 E	5010	7614	2367	-3	98	09
Zhangye	Gansu	38.93 N	100.43 E	4865	7288	2439	-2	88	62
Fogang	Guangdong	23.87 N	113.53 E	223	1063	6077	39	92	62
Gaoyao	Guangdong	23.05 N	112.47 E	39	720	8493	4	93	80
Guangzhou/Baiyun	Guangdong	23.13 N	113.32 E	26	737	8352	42	93	80
Heyuan	Guangdong	23.73 N	114.68 E	135	902	6408	40	93	62
Lian Xian	Guangdong	24.78 N	112.38 E	322	1660	7018	35	94	62
Lianping	Guangdong	24.37 N	114.48 E	702	1301	7189	36	92	78
Meixian	Guangdong	24.30 N	116.12 E	276	937	8016	39	94	62
Shangchuan Island	Guangdong	21.73 N	112.77 E	59	514	8621	46	68	81
Shantou	Guangdong	23.40 N	116.68 E	10	779	7743	45	06	80
Shanwei	Guangdong	22.78 N	115.37 E	16	528	8272	46	68	62
Shaoguan	Guangdong	24.80 N	113.58 E	223	1370	7565	37	94	62
Shenzhen	Guangdong	22.55 N	114.10 E	59	531	8597	4	92	80
Xinyi	Guangdong	22.35 N	110.93 E	276	570	8763	43	93	62
Yangjiang	Guangdong	21.87 N	111.97 E	72	547	8470	45	06	80
Zhangjiang	Guangdong	21.22 N	110.40 E	92	423	9005	46	92	80
Beihai	Guangxi	21.48 N	109.10 E	52	621	8826	4	91	80
Bose	Guangxi	23.90 N	106.60 E	794	716	8488	43	96	62
Guilin	Guangxi	25.33 N	110.30 E	545	1971	6549	35	92	78
Guiping	Guangxi	23.40 N	110.08 E	144	957	8084	42	93	80
Hechi/Jnchengjiang	Guangxi	24.70 N	108.05 E	702	1229	7489	40	93	78
Lingling	Guangxi	26.23 N	111.62 E	571	2608	5993	31	94	78
Liuzhou	Guangxi	24.35 N	109.40 E	318	1370	7604	38	94	78
Longzhou	Guangxi	22.37 N	106.75 E	423	681	8596	43	94	80
Mengshan	Guangxi	24.20 N	110.52 E	476	1485	7125	36	92	79

TABLE D-3 International Climatic Data (continued)

Muxu Guangxi 22.82 N 106.3 Elev., ft Hunth Wuxu Guangxi 22.82 N 105.35 E 240 Wuxu Guangxi 23.36 N 105.25 E 240 Guangxi 23.34 N 105.25 E 240 Guandxi 23.34 N 105.25 E 20 Guizhou 27.30 N 105.25 E 240 Guizhou 25.87 N 105.25 E 245 Guizhou 25.87 N 108.25 E 245 Guizhou 27.97 N 108.25 E 245 Guizhou 27.97 N 108.25 E 245 Guizhou 27.70 N 108.25 E 245 Guizhou 27.70 N 108.25 E 245 Guizhou 27.70 N 108.25 E 245 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Heating Design</th><th>Cooling Design</th><th>Cooling Design Temperature</th></td<>							Heating Design	Cooling Design	Cooling Design Temperature
ont J Cuangyi 2.2.82 N 108.35 E 240 Wuxu Guangyi 2.2.82 N 108.35 E 240 Guangyi 2.1.95 N 105.25 E 2065 Guarkou 2.1.95 N 105.25 E 206 Guizkou 2.5.83 N 106.72 E 39.4 Guizkou 2.5.83 N 106.72 E 35.4 Guizkou 2.5.93 N 106.72 E 35.4 Guizkou 2.5.93 N 106.72 E 35.4 Guizkou 2.5.43 N 106.73 E 45.24 Guiz	Provin Region	e or		Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Wet-Bulb
wuxu Cuangxi 2.2.82 N 108.35 E 240 Wuxu Guangxi 2.3.48 N 105.95 E 2065 Guangxi 2.3.48 N 11.30 E 394 Guizhou 2.7.39 N 105.23 E 4957 Guizhou 2.5.83 N 106.72 E 324 Guizhou 2.5.83 N 106.73 E 4957 Guizhou 2.5.83 N 106.73 E 324 Guizhou 2.5.83 N 106.73 E 324 Guizhou 2.5.97 N 108.73 E 324 Guizhou 2.5.97 N 108.73 E 495 Guizhou 2.5.93 N 10.428 E 245 Guizhou 2.5.93 N 10.428 E 254 Guizhou 2.5.43 N 10.638 E 254 Jaiaj	0						%9.66	1.0%	1.0%
Wuxut Guangxi 2.2 8.2 N 108.35 E 240 Guangxi 2.3.30 N 105.95 E 2065 Guangxi 2.3.48 N 105.95 E 2065 Guizhou 2.3.48 N 105.25 E 2065 Guizhou 2.5.83 N 106.25 E 394 Guizhou 2.5.83 N 106.25 E 352 Guizhou 2.5.83 N 106.75 E 352 Guizhou 2.5.83 N 106.75 E 352 Guizhou 2.5.93 N 106.75 E 352 Guizhou 2.5.93 N 106.85 E 205 Guizhou 2.5.93 N 106.85 E 205 Guizhou 2.5.43 N 106.85 E 205 Guizhou 2.5.43 N 106.85 E 205 Guizhou 2.5.43 N 106.85 E 205 Jand Hainan 10.52 N 106.85 E 205 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Guangxi 23.30 N 10.95 E 2605 Guangxi 21.95 N 108.62 E 20 Guangxi 21.95 N 108.62 E 20 Guizhou 27.34 N 113.21 E 394 Guizhou 25.33 N 106.72 E 340 Guizhou 26.37 N 108.73 E 342 Guizhou 26.37 N 108.83 E 352 Guizhou 26.37 N 108.63 E 352 Jiai Hainan 19.25 N 10.63 E 352 Jiai Hainan 16.23 N 10.42 E 36 Jiai Hainan	Guang	22.82	108.35	240	857	8315	42	93	62
Guangxi 21.95 N 108.62 E 20 Guangxi 23.48 N 111.30 E 394 Guizhou 27.34 N 105.23 E 4957 Guizhou 25.83 N 105.23 E 4957 Guizhou 26.58 N 106.72 E 4957 Guizhou 26.97 N 108.53 E 4947 Guizhou 26.97 N 108.53 E 2005 Guizhou 26.97 N 108.53 E 2005 Guizhou 26.97 N 108.53 E 272 Juaj Hainan 19.23 N 10.43 E 272 Juaj Hainan 19.23 N 11.04 E 276 Juag Hebei 18.23 N 11.04 E 276 Juag Hebei 18.23 N 11.04 E 276	Guang	23.30	105.95	2605	1283	6469	37	87	74
Guangxi 23.48 N 11.30 E 394 Guizhou 27.30 N 105.23 E 4957 Guizhou 25.83 N 105.23 E 3340 Guizhou 26.58 N 105.23 E 3340 Guizhou 25.57 N 108.57 E 342 Guizhou 26.97 N 108.52 E 342 Guizhou 26.97 N 108.52 E 354 Guizhou 26.97 N 108.52 E 354 Guizhou 26.97 N 108.52 E 354 Janada Hainan 19.50 N 10.68 E 457 Jiaji Hainan 19.23 N 10.68 E 45 Jiaji Hainan 19.23 N 11.62 E 16 Alaji Hainan 10.50 N 11.62 E 16	Guang	21.95	108.62	20	692	8415	43	91	80
Guizhou 27.30 N 105.23 E 4957 Guizhou 25.83 N 105.25 E 3340 Guizhou 26.58 N 106.75 E 3340 Guizhou 25.43 N 106.75 E 3440 Guizhou 25.43 N 108.53 E 3254 Guizhou 26.97 N 108.53 E 2005 Guizhou 26.97 N 108.53 E 2005 Guizhou 26.97 N 108.53 E 2005 Guizhou 26.87 N 108.53 E 2005 Jiaji Hainan 10.10 N 10.63 E 2072 Alaji Hainan 10.52 N 11.04 E 20 Alaji Hainan 10.53 N 11.05 E 10 Albei Hainan 10.53 N 11.05 E 10	Guang	23.48		394	1074	7934	39	96	80
Guizhou 25.83 N 107.55 E 3340 Guizhou 26.84 N 106.75 E 3524 Guizhou 25.43 N 106.75 E 3524 Guizhou 26.97 N 106.75 E 3524 Guizhou 26.97 N 108.55 E 2005 Guizhou 26.87 N 108.55 E 272 Jiaji Hainan 19.23 N 106.8 E 49 Allaji Hainan 16.53 N 110.25 E 21 And Hainan 16.53 N 110.55 E 21 And Hainan 16.53 N 110.55 E 16 <t< td=""><td>Guizho</td><td>27.30</td><td></td><td>4957</td><td>3837</td><td>3496</td><td>27</td><td>83</td><td>89</td></t<>	Guizho	27.30		4957	3837	3496	27	83	89
Guizhou 26.58 N 106.77 E 3524 Guizhou 25.43 N 106.77 E 1447 Guizhou 25.97 N 108.53 E 942 Guizhou 26.97 N 108.67 E 2005 Guizhou 26.97 N 108.67 E 2005 Guizhou 26.87 N 108.62 E 2005 Jabada Hainan 19.52 N 106.88 E 2772 Jiāji Hainan 19.52 N 106.88 E 26 Jand Hainan 19.52 N 106.88 E 26 Jand Hainan 10.53 N 110.47 E 26 Jand Hainan 10.53 N 110.62 E 26 Jang Hainan 10.53 N 110.63 E 26 Jang Habei 10.53 N 110.52	Guizho	25.83		3340	3021	4530	27	83	71
g/duzhou 25.43 N 106.77 E 1447 g/duzhou Guizhou 25.97 N 108.53 E 942 Guizhou 26.97 N 108.53 E 2005 Guizhou 26.97 N 108.63 E 336 Guizhou 26.87 N 104.28 E 336 Guizhou 25.43 N 105.88 E 2772 Nada Hainan 19.50 N 106.88 E 267 JBasuo Hainan 19.50 N 10.68 E 267 Jand Hainan 10.50 N 10.43 E 267 JOSeezhen Hainan 16.53 N 11.63 E 216 JOSeezhen Hebei 9.8 N 11.63 E 216 JOSeezhen Hebei 9.0 10.55 E 216 JOSeezhen Hebei N 11.63	Guizhc	26.58		3524	2879	4689	28	85	70
g/Guzhou Cauizhou 25.97 N 108.63 E 942 Guizhou 26.97 N 108.67 E 2005 Guizhou 27.95 N 108.67 E 1371 Guizhou 25.43 N 104.28 E 736 Guizhou 25.43 N 105.88 E 737 Mada Hainan 19.10 N 106.88 E 25.43 Jhaji Hainan 19.10 N 108.52 E 26.77 Jhaji Hainan 19.10 N 108.52 E 26.7 Jhaji Hainan 19.23 N 110.43 E 26.7 And Hainan 16.83 N 115.33 E 26.2 And Hainan 16.83 N 116.33 E 26.2 And Hainan 16.83 N 115.33 E 26.2 Angazha Hainan	Guizho	25.43		1447	1351	9902	38	93	77
Guizhou 26,97 N 108,67 E 2005 Guizhou 26,97 N 108,28 E 1371 Guizhou 26,87 N 104,28 E 7336 Guizhou 25,43 N 104,28 E 7324 JBasauo Hainan 19,25 N 10,68 E 2772 JBasauo Hainan 19,23 N 10,62 E 2772 Jiaji Hainan 19,23 N 110,43 E 26 Jiaji Hainan 19,23 N 110,43 E 26 and Hainan 16,83 N 111,63 E 16 and Hainan 18,23 N 115,37 E 16 ADagezhen Hebei 40,27 N 115,57 E 16 Hebei Hebei 40,40 N 115,50 E 14 Hebei Hebei 3	Guizhc	25.97		942	1967	6362	34	93	78
Guizhou 27.95 N 108.25 E 1371 Guizhou 26.87 N 104.28 E 7356 Guizhou 25.43 N 105.18 E 7324 Mada Hainan 19.52 N 106.88 E 2772 Jiaji Hainan 19.10 N 10.68 E 26 Alainan 19.23 N 110.47 E 26 and Hainan 16.23 N 110.62 E 26 and Hainan 16.23 N 110.62 E 16 anya Hebei 38.85 N 115.27 E 23 Abacheng Hebei 40.97 N 115.50 E 166 Hebei 40.94 N 116.93 E 266 Hebei 40.97 N 115.50 E 176 Hebei 40.90 N 118.90 E	Guizhc	26.97		2005	3322	4659	28	88	75
Guizhou 26.87 N 104.28 E 7336 Guizhou 25.43 N 105.88 E 4524 Nada Hainan 19.52 N 106.88 E 2772 yBasuo Hainan 19.10 N 109.58 E 267 Hainan 19.10 N 110.35 E 26 49 and Hainan 19.23 N 110.47 E 82 and Hainan 16.53 N 110.47 E 6 and Hainan 16.83 N 110.47 E 6 23 Abagezhen Hainan 18.23 N 110.52 E 16 16 Hachei Hebei 40.97 N 115.50 E 16 16 Hachei Hebei 39.43 N 118.95 E 26 Hachei Hebei 39.67 N 118.95 E	Guizhc	27.95		1371	2494	5719	34	93	92
Quizhou 25.43 N 105.18 E 4524 Nada Hainan 27.70 N 106.88 E 2772 yBasuo Hainan 19.52 N 10.958 E 554 Jiaji Hainan 20.03 N 110.35 E 49 Jiaji Hainan 19.23 N 110.47 E 49 and Hainan 16.53 N 110.47 E 49 and Hainan 16.53 N 110.47 E 16 and Hainan 16.53 N 110.47 E 23 ADagezhen Hebei 38.85 N 115.57 E 216 Hachei Hebei 40.40 N 116.63 E 216 Hachei Hebei 39.43 N 118.95 E 266 Hachei Hebei 39.67 N 118.95 E 2169 <tr< td=""><td>Guizho</td><td>26.87</td><td></td><td>7336</td><td>4632</td><td>2342</td><td>21</td><td>75</td><td>09</td></tr<>	Guizho	26.87		7336	4632	2342	21	75	09
Nada Hainan 27.70 N 106.88 E 2772 yBasuo Hainan 19.25 N 108.62 E 26 Hainan 20.03 N 110.35 E 49 Jiaji Hainan 19.23 N 110.47 E 49 and Hainan 16.53 N 111.62 E 16 anya Hainan 16.83 N 11.63 E 16 anya Hainan 16.83 N 11.63 E 23 Hebei Hebei 38.85 N 115.37 E 216 Habei Hebei 40.97 N 115.57 E 166 Hebei Hebei 40.40 N 115.50 E 36 Hebei Hebei 39.43 N 118.95 E 36 Hebei Hebei 39.67 N 118.15 E 26 H	Guizho	25.43		4524	2595	4527	30	83	89
Nadada Hainan 19.52 N 109.58 E 554 g/Basuo Hainan 19.10 N 108.62 E 26 Jiaji Hainan 19.23 N 110.35 E 49 Aliaji Hainan 16.53 N 110.47 E 49 and Hainan 16.83 N 110.47 E 16 anya Hainan 16.83 N 110.47 E 16 anya Hebei 8.8 N 115.37 E 23 Hebei 40.97 N 115.57 E 216 Hebei 40.97 N 116.63 E 116 Hebei 40.40 N 118.90 E 146 Hebei 39.43 N 114.42 E 266 Hebei 39.67 N 118.15 E 266 Hebei 41.93 N 114.50 <td< td=""><td>Guizho</td><td>27.70</td><td></td><td>2772</td><td>3091</td><td>4673</td><td>30</td><td>88</td><td>73</td></td<>	Guizho	27.70		2772	3091	4673	30	88	73
g/Basuo Hainan 19.10 N 108.62 E 26 Jiaji Hainan 20.03 N 110.35 E 49 Jiaji Hainan 19.23 N 110.47 E 82 and Hainan 16.53 N 111.62 E 16 and Hainan 16.83 N 111.62 E 16 Hebei Hebei 38.85 N 115.57 E 23 Habei Hebei 40.97 N 115.57 E 2169 Habei Hebei 40.40 N 115.50 E 246 Habei Hebei 39.43 N 118.50 E 266 Jamag Hebei 39.67 N 118.15 E 266 Hebei 41.93 N 114.50 E 2769 Jamag Hebei 37.07 N 114.50 E 2769	Hainan	19.52		554	245	9096	48	94	78
Jiaji Hainan 20.03 N 110.35 E 49 and Hainan 19.23 N 110.47 E 82 and Hainan 16.53 N 11.62 E 16 and Hainan 16.83 N 11.63 E 16 anya Hebei 38.85 N 115.37 E 23 Hebei 40.97 N 115.57 E 2169 Hachei 40.97 N 115.50 E 2169 Hachei 40.40 N 115.50 E 748 Indebei 39.43 N 118.95 E 748 Indebei 38.03 N 118.95 E 266 Jamizishan Hebei 40.40 N 118.15 E 2769 Hebei 39.67 N 118.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hainan	19.10		26	107	10,168	53	91	81
Jügij Hainan 19.23 N 110.47 E 82 and Hainan 16.53 N 111.62 E 16 amya Hainan 16.83 N 111.62 E 16 Amya Hainan 18.23 N 109.52 E 23 Hebei 38.85 N 115.57 E 62 Hebei 40.97 N 117.93 E 2169 Habei 40.40 N 118.50 E 2169 Hebei 40.40 N 118.95 E 248 Hebei 39.43 N 118.95 E 266 Hebei 39.67 N 118.95 E 266 Jaminzishan Hebei N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hainan	20.03		49	211	6596	51	93	81
and Hainan 16.53 N 111.62 E 16 anya Hainan 18.23 N 112.33 E 16 anya Hainan 18.23 N 112.33 E 16 Hebei 38.85 N 115.57 E 62 Hebei 40.97 N 115.57 E 1227 Hebei 40.40 N 115.50 E 1765 Hebei 39.43 N 118.95 E 1765 Hebei 39.43 N 118.95 E 2769 Independent Hebei 38.03 N 118.95 E 2769 Independent Hebei 38.03 N 118.15 E 2769 Independent Hebei 39.67 N 118.15 E 2769 Independent Hebei 39.67 N 118.15 E 2769	Hainan	19.23		82	133	9882	52	93	81
and Hainan 16.83 N 112.33 E 16 Anyaa Hainan 16.83 N 112.33 E 16 Hebei 38.85 N 115.57 E 62 Hebei 40.97 N 115.57 E 1227 Hebei 40.40 N 115.50 E 1765 Hebei 39.43 N 118.95 E 39 Hebei 39.43 N 118.95 E 36 Hebei 38.03 N 118.95 E 266 Hebei 38.03 N 114.42 E 266 Hebei 39.67 N 118.15 E 95 Hebei 39.67 N 118.15 E 256 Hebei 39.67 N 118.15 E 2769	Hainan	16.53		16	0	11,282	69	06	83
anya Hainan 18.23 N 109.52 E 23 Hebei 38.85 N 115.57 E 62 Hebei 40.97 N 115.57 E 1227 Habei 40.40 N 115.50 E 1765 Hebei 39.43 N 118.90 E 748 Indebei 40.40 N 118.95 E 748 Indebei 38.03 N 114.42 E 266 Indebei 41.93 N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hainan	16.83		16	0	11,221	69	68	82
Hebei 38.85 N 115.57 E 62 Hebei 40.97 N 117.93 E 1227 Hebei 40.97 N 115.50 E 2169 Hebei 40.40 N 118.50 E 39 Hebei 39.43 N 118.95 E 748 Hebei 38.03 N 114.42 E 266 JZhuizishan Hebei 39.67 N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hainan	18.23		23	7	10,735	09	06	80
Hebei 40.97 N 117.93 E 1227 Hebei 41.22 N 116.63 E 2169 Hebei 39.43 N 118.50 E 36 Hebei 39.43 N 118.95 E 748 Indebei 38.03 N 114.42 E 266 Hebei 39.67 N 118.15 E 95 JZhuizishan Hebei 37.07 N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hebei			62	4949	4411	14	93	73
/Dagezhen Hebei 41.22 N 116.63 E 2169 Hachei 40.40 N 115.50 E 765 Hebei 39.43 N 118.90 E 39 Hebei 40.40 N 118.95 E 748 Hebei 38.03 N 114.42 E 266 Hebei 39.67 N 118.15 E 95 JAhuizishan Hebei N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hebei			1227	8249	3356	0	68	69
Hebei 40.40 N 115.50 E 1765 Hebei 39.43 N 118.90 E 39 Indepei 40.40 N 118.95 E 748 Indepei 38.03 N 114.42 E 266 Indepei 39.67 N 118.15 E 95 Hebei 41.93 N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769				2169	7891	2574	-5	98	99
Hebei 39.43 N 118.90 E 39 Hebei 40.40 N 118.95 E 748 Hebei 38.03 N 114.42 E 266 3/Zhuizishan Hebei 31.07 N 118.15 E 95 Hebei 37.07 N 114.50 E 2769	Hebei			1765	6490	3403	S	68	29
Hebei 40.40 N 118.95 E 748 Hebei 38.03 N 114.42 E 266 Hebei 39.67 N 118.15 E 95 Klabei A1.93 N 117.75 E 2769 Hebei 37.07 N 114.50 E 2769	Hebei			39	5918	3562	~	87	74
ang Hebei 38.03 N 114.42 E 266 Hebei 39.67 N 118.15 E 95 Hebei 41.93 N 117.75 E 2769 Hebei 37.07 N 114.50 E 256	Hebei			748	6611	3261	0	88	71
Hebei 39.67 N 118.15 E 95 2/Zhuizishan Hebei 41.93 N 117.75 E 2769 Hebei 37.07 N 114.50 E 256	Hebei			266	4695	4469	15	93	73
y/Zhuizishan Hebei 41.93 N 117.75 E 2769 Hebei 37.07 N 114.50 E 256	Hebei			95	5675	3867	~	68	74
Hebei 37.07 N 114.50 E 256				2769	0098	2201	9-	83	99
	Hebei			256	4506	4626	18	93	73
39.83 N 114.57 E 2986	Hebei	39.83	I 114.57 E	2986	7948	2545	6-	98	65

TABLE D-3 International Climatic Data (continued)

								Cooling Design	Tomorous days
Country City	Province or Region	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooming Design Dry-Bulb	Ory-Bulb Wet-Bulb
)						%9.66	1.0%	1.0%
(China cont.)									
Zhangjiakou	Hebei	40.78 N	114.88 E	2382	6823	3202	2	88	65
Aihui	Heilongjiang	50.25 N	127.45 E	545	11,840	1840	-28	83	89
Anda	Heilongjiang	46.38 N	125.32 E	492	10,066	2482	-20	98	69
Baoqing	Heilongjiang	46.32 N	132.18 E	272	9731	2379	-17	85	69
Fujin	Heilongjiang	47.23 N	131.98 E	213	10,265	2356	-18	85	70
Hailun	Heilongjiang	47.43 N	126.97 E	787	11,017	2137	-24	83	89
Harbin	Heilongjiang	45.75 N	126.77 E	469	9830	2482	-20	85	69
Hulin	Heilongjiang	45.77 N	132.97 E	338	7266	2228	-17	82	70
Huma	Heilongjiang	51.72 N	126.65 E	587	12,658	1760	-36	84	29
Jixi	Heilongjiang	45.28 N	130.95 E	892	9518	2318	-14	84	69
Keshan	Heilongjiang	48.05 N	125.88 E	778	11,108	2123	-25	84	89
Mudanjiang	Heilongjiang	44.57 N	129.60 E	794	9464	2449	-16	85	69
Qiqihar	Heilongjiang	47.38 N	123.92 E	486	9924	2514	-18	98	69
Shangzhi	Heilongjiang	45.22 N	127.97 E	627	10,340	2189	-26	84	70
Suifenhe	Heilongjiang	44.38 N	131.15 E	1634	10,219	1714	-16	82	89
Sunwu	Heilongjiang	49.43 N	127.35 E	771	12,334	1585	-32	83	89
Tailai	Heilongjiang	46.40 N	123.42 E	492	9431	2663	-16	87	69
Tonghe	Heilongjiang	45.97 N	128.73 E	361	10,618	2210	-24	84	71
Yichun	Heilongjiang	47.72 N	128.90 E	761	11,239	1965	-28	83	89
Anyang/Zhangde	Henan	36.12 N	114.37 E	249	4318	4648	18	93	7.5
Boxian	Henan	33.88 N	115.77 E	138	4006	4755	20	93	77
Gushi	Henan	32.17 N	115.67 E	190	3567	4964	24	92	80
Lushi	Henan	34.05 N	111.03 E	1870	4572	3865	17	06	73
Nanyang	Henan	33.03 N	112.58 E	430	3779	4750	23	92	77
Xihua	Henan	33.78 N	114.52 E	174	4032	4623	21	93	78
Xinyang	Henan	32.13 N	114.05 E	377	3576	4922	24	92	78
Zhengzhou	Henan	34.72 N	113.65 E	364	4146	4614	19	93	7.5
Zhumadian	Henan	33.00 N	114.02 E	272	3885	4718	22	93	77
Fangxian	Hubei	32.03 N	110.77 E	1427	3688	4483	24	91	7.5
Guanghua	Hubei	32.38 N	111.67 E	299	3445	4989	26	93	62
Jiangljing/Jingzhou	Hubei	30.33 N	112.18 E	108	3064	5325	29	93	81
Macheng	Hubei	31.18 N	114.97 E	194	3166	5363	27	94	80

TABLE D-3 International Climatic Data (continued)

Country	Province or						Temperature	Dry-Bulb Wet-Bulb	Wet-Bulb
City	Region	Latitude	Longitude	Elev., ft	HDD65	CDD50	%9.66	1.0%	1.0%
(China cont.)									
Wuhan/Nanhu	Hubei	30.62 N	114.13 E	75	3140	5433	28	94	81
Yichang	Hubei	30.70 N	111.30 E	440	2812	5476	30	93	79
Zaoyang	Hubei	32.15 N	112.67 E	417	3463	5034	25	93	78
Zhongxiang	Hubei	31.17 N	112.57 E	217	3192	5240	28	92	80
Changde	Hunan	29.05 N	111.68 E	115	2896	5520	30	95	81
Chenzhou	Hunan	25.80 N	113.03 E	209	2496	6255	31	95	78
Nanyue	Hunan	27.30 N	112.70 E	4196	4866	3090	17	77	7.1
Sangzhi	Hunan	29.40 N	110.17 E	1056	2896	5229	30	93	77
Shaoyang	Hunan	27.23 N	111.47 E	814	2794	5651	30	93	78
Tongdao/Shuangjiang	Hunan	26.17 N	109.78 E	1302	2706	5440	30	06	92
Wugang	Hunan	26.73 N	110.63 E	1115	2854	5424	30	92	77
Yuanling	Hunan	28.47 N	110.40 E	469	2817	5442	30	93	78
Yueyang	Hunan	29.38 N	113.08 E	171	2870	5681	30	92	81
Zhijiang	Hunan	27.45 N	109.68 E	968	2857	5385	30	92	78
Abag Qi/Xin Hot	Inner Mongolia	44.02 N	114.95 E	3701	11,253	1853	-25	84	09
Arxan	Inner Mongolia	47.17 N	119.95 E	3373	13,802	964	-35	77	61
Bailing-Miao	Inner Mongolia	41.70 N	110.43 E	4518	9399	2005	-15	85	59
Bayan Mod	Inner Mongolia	40.75 N	104.50 E	4360	7762	2911	9	68	59
Bugt	Inner Mongolia	48.77 N	121.92 E	2425	12,243	1187	-22	62	62
Bugt	Inner Mongolia	42.33 N	120.70 E	1316	7853	2855	4	87	89
Chifeng/Ulanhad	Inner Mongolia	42.27 N	118.97 E	1877	7571	3015	-5	88	29
Dongsheng	Inner Mongolia	39.83 N	109.98 E	4787	8149	2202	-3	83	59
Duolun/Dolonnur	Inner Mongolia	42.18 N	116.47 E	4091	10,403	1547	-18	80	61
Ejin Qi	Inner Mongolia	41.95 N	101.07 E	3087	7313	3592	<u>-</u>	95	62
Erenhot	Inner Mongolia	43.65 N	112.00 E	3169	0840	2442	-19	68	61
Guaizihu	Inner Mongolia	41.37 N	102.37 E	3150	7189	3769	4	76	61
Hailar	Inner Mongolia	49.22 N	119.75 E	2005	12,730	1604	-32	82	64
Hails	Inner Mongolia	41.45 N	106.38 E	4954	8903	2317	-111	85	57
Haliut	Inner Mongolia	41.57 N	108.52 E	4232	8927	2305	6	85	61
Hohhot	Inner Mongolia	40.82 N	111.68 E	3494	8022	2509	4	98	63
Huade	Inner Mongolia	41.90 N	114.00 E	4869	10,129	1600	-13	80	59
Jartai	Inner Mongolia	39.78 N	105 75 F	3380	0909	2456	·	8	Ç

TABLE D-3 International Climatic Data (continued)

Country City	Province or Region	Latitude		Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooing Design Temperature Dry-Bulb Wet-Bulb	Wet-Bulb
•	٥							%9.66	1.0%	1.0%
(China cont.)										
Jarud Qi/Lubei	Inner Mongolia	44.57 N	120.90	00 E	873	8245	2856	7-	68	89
Jining	Inner Mongolia	41.03 N	113.07	7 E	4646	9276	1709	6-	81	09
Jurh	Inner Mongolia	42.40 N	112.90	00 E	3780	2906	2401	-13	87	09
Lindong/Bairin Zuoq	Inner Mongolia	43.98 N	119.40	10 E	1591	8954	2352	-10	87	29
Linhe	Inner Mongolia	40.77 N	107.40	10 E	3415	7302	2995	-1	68	64
Linxi	Inner Mongolia	43.60 N	118.07	7 E	2625	9154	2171	-10	8	64
Mandal	Inner Mongolia	42.53 N	110.13	3 E	4012	2968	2413	-10	87	59
Naran Bulag	Inner Mongolia	44.62 N	114.15	.5 E	3881	11,695	1655	-23	\$	09
Nenjiang	Inner Mongolia	49.17 N	125.23	3 E	797	11,980	1880	-32	83	29
Otog Qi/Ulan	Inner Mongolia	39.10 N	107.98	8 E	4531	7722	2505	ς-	87	09
Tongliao	Inner Mongolia	43.60 N	122.27	17 E	591	8319	2951	6-	88	70
Tulihe	Inner Mongolia	50.45 N	121.70	70 E	2405	14,791	902	-42	78	62
Uliastai	Inner Mongolia	45.52 N	116.97	7 E	2756	11,342	1892	-24	85	62
Xi Ujimqin Qi	Inner Mongolia	44.58 N	117.60	90 E	3271	11,137	1656	-21	83	62
Xilin Hot/Abagnar	Inner Mongolia	43.95 N	116.07	7 E	3251	10,480	2051	-20	85	62
Xin Barag Youqi	Inner Mongolia	48.67 N	116.82	32 E	1824	11,562	1945	-23	85	63
Dongtai	Jiangsu	32.87 N	120.32	12 E	16	3813	4612	24	91	81
Ganyu/Dayishan	Jiangsu	34.83 N	119.13	3 E	33	4412	4255	19	68	78
Liyang	Jiangsu	31.43 N	119.48	:8 E	26	3517	4909	25	93	81
Lusi	Jiangsu	32.07 N	121.60	90 E	33	4613	4572	27	06	81
Qingjiang	Jiangsu	33.60 N	119.03	3 E	62	4018	4561	21	06	80
Shenyang/Hede	Jiangsu	33.77 N	120.25	5 E	23	4099	4370	22	06	80
Xuzhou	Jiangsu	34.28 N	117.15	5 E	138	4081	4695	20	92	77
Ganzhou	Jiangxi	25.85 N	114.95	5 E	410	1924	6919	34	94	78
Guangchang	Jiangxi	26.85 N	116.33	3 E	466	2289	6373	30	95	78
Ji'An	Jiangxi	27.12 N	114.97	7 E	256	2378	6378	32	95	62
Jingdezhen	Jiangxi	29.30 N	117.20	30 E	197	2620	5889	29	95	80
Lu Shan (Mountain)	Jiangxi	29.58 N	115.98	8 E	3822	4773	3240	17	80	72
Nanchang	Jiangxi	28.60 N	115.92	2 E	164	2685	9265	31	94	80
Nancheng	Jiangxi	27.58 N	116.65	55 E	569	2509	6120	31	94	62
Xiushui	Jiangxi	29.03 N	114.58	38 E	482	2853	5582	27	95	62
Хшижп	Lianoxi	24.95 N	115.65	55 E	981	1658	6685	33	60	77

TABLE D-3 International Climatic Data (continued)

Country	Province or	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Dry-Bulb Wet-Bulb
Ciry	Negloli						%9.66	1.0%	1.0%
(China cont.)									
Yichun	Jiangxi	27.80 N	114.38 E	423	2717	5726	30	94	42
Changbai	Jilin	41.35 N	128.17 E	3340	10,452	1502	-17	78	99
Changchun	Jilin	43.90 N	125.22 E	781	8844	2708	-13	85	70
Changling	Jilin	44.25 N	123.97 E	623	8939	2725	-14	98	69
Dunhua	Jilin	43.37 N	128.20 E	1726	9923	1891	-17	81	89
Huadian	Jilin	42.98 N	126.75 E	998	9326	2484	-26	84	71
Ji'An	Jilin	41.10 N	126.15 E	587	7612	2944	6-	98	72
Linjiang	Jilin	41.72 N	126.92 E	1093	8645	2573	-15	85	71
Qian Gorlos	Jilin	45.12 N	124.83 E	453	9062	2770	-16	98	71
Yanji	Jilin	42.88 N	129.47 E	584	0898	2396	-10	85	70
Chaoyang	Liaoning	41.55 N	120.45 E	577	7072	3397	<i>S</i> -	06	70
Dalian/Dairen/Luda	Liaoning	38.90 N	121.63 E	318	5648	3441	10	98	73
Dandong	Liaoning	40.05 N	124.33 E	46	6642	3014	2	83	74
Haiyang Island	Liaoning	39.05 N	123.22 E	33	5475	3341	13	82	77
Jinzhou	Liaoning	41.13 N	121.12 E	230	8659	3397	7	87	72
Kuandian	Liaoning	40.72 N	124.78 E	856	7744	2667	-10	84	72
Qingyuan	Liaoning	42.10 N	124.95 E	771	8373	2749	-17	87	71
Shenyang/Dongta	Liaoning	41.77 N	123.43 E	141	7218	3325	8	87	73
Siping	Liaoning	43.18 N	124.33 E	541	8240	2898	-10	98	71
Yingkou	Liaoning	40.67 N	122.20 E	13	6765	3403	0	85	75
Zhangwu	Liaoning	42.42 N	122.53 E	276	7754	3060	8-	87	71
Yanchi	Ningxia	37.78 N	107.40 E	4426	6914	2774	-2	88	61
Yinchuan	Ningxia	38.48 N	106.22 E	3648	6617	2979	1	87	99
Zhongning	Ningxia	37.48 N	105.67 E	3888	6217	3070	8	88	99
Daqaidam	Qinghai	37.85 N	95.37 E	10,413	10,776	734	-11	74	49
Darlag	Qinghai	33.75 N	99.65 E	13,018	12,136	100	-13	62	48
Delingha	Qinghai	37.37 N	97.37 E	9783	9185	1170	-5	77	53
Dulan/Qagan Us	Qinghai	36.30 N	98.10 E	10,472	8996	770	Т	74	50
Gangca/Shaliuhe	Qinghai	37.33 N	100.13 E	10,830	11,792	174	<i>L</i> -	64	50
Golmud	Qinghai	36.42 N	94.90 E	9216	8414	1442	1	79	52
Henan	Qinghai	34.73 N	101.60 E	11,483	11,607	155	-17	49	50
Lenghu	Oinghai	38 83 N	03 38 E	0000	00001		c	Ċ	9

_
rea
tin
con
ta (
Ē
E C
Ĕ
itional Climatic Data ($c\epsilon$
ona
aĦ
Internal
က
Ц С
ABLE D-3
⋖

,	Province or	Latitude		Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooling Design Temperature Dry-Bulb Wet-Bulb	r Temperature Wet-Bulb
CITY	Kegion)				%9.66	1.0%	1.0%
(China cont.)										
Madoi/Huangheyan	Qinghai	34.92 N	N 98.22	2 E	14,019	14,135	31	-18	58	43
Qumarleb	Qinghai	34.13 N	N 95.78	8 E	13,701	13,175	29	-16	62	46
Tongde	Qinghai	35.27 N	N 100.65	55 E	10,794	11,220	288	-14	89	51
Tuotuohe/Tanggulash	Qinghai	34.22 N	N 92.43	3 E	14,879	14,505	21	-21	09	42
Wudaoliang	Qinghai	35.22 N	N 93.08	8 E	15,135	15,114	&	-16	56	40
Xining	Qinghai	36.62 N	N 101.77	77 E	7421	7417	1620	3	78	57
Yushu	Qinghai	33.02 N	N 97.02	12 E	12,080	9354	550	-2	70	52
Zadoi	Qinghai	32.90 N	N 95.30	0 E	13,346	11,257	218	6-	65	48
Ankang/Xing'an	Shaanxi	32.72 N	N 109.03)3 E	955	3242	4920	28	93	92
Baoji	Shaanxi	34.35 N	N 107.13	13 E	2001	4345	3985	21	92	71
Hanzhong	Shaanxi	33.07 N	N 107.03)3 E	1670	3676	4253	27	68	75
Hua Shan (Mount)	Shaanxi	34.48 N	N 110.08)8 E	8929	7893	1516	5	72	09
Tongchuan	Shaanxi	35.17 N	N 109.05	05 E	2999	5470	3117	14	87	29
Xi'An	Shaanxi	34.30 N	N 108.93	93 E	1306	4332	4276	21	93	74
Yan An	Shaanxi	36.60 N	N 109.50	50 E	3146	5872	3132	9	68	99
Yulin	Shaanxi	38.23 N	N 109.70	70 E	3471	7039	2834	<u>-</u> -	88	64
Chengshantou (Cape)	Shandong	37.40 N	N 122.68	58 E	154	5125	3151	20	79	74
Dezhou	Shandong	37.43 N	N 116.32	32 E	72	4643	4591	16	91	75
Haiyang	Shandong	36.77 N	N 121.17	17 E	210	4943	3742	16	85	74
Heze/Caozhou	Shandong	35.25 N	N 115.43	43 E	167	4280	4627	18	92	77
Huimin	Shandong	37.50 N	N 117.53	53 E	39	5009	4270	12	91	75
Jinan/Sinan	Shandong	36.68 N	N 116.98	38 E	190	4161	5036	18	93	74
Linyi	Shandong	35.05 N	N 118.35	35 E	282	4388	4395	18	06	92
Longkou	Shandong	37.62 N	N 120.32	32 E	16	5167	3822	17	88	92
Quingdao/Singtao	Shandong	36.07 N	N 120.33	33 E	253	4651	3872	19	98	74
Rizhao	Shandong	35.38 N	N 119.53	53 E	49	4595	3926	19	85	78
Tai Shan (Mtns)	Shandong	36.25 N	N 117.10	10 E	5039	8288	1537	2	71	63
Weifang	Shandong	36.70 N	N 119.08)8 E	167	4816	4315	12	91	75
Xinxian	Shandong	36.03 N	N 115.58	58 E	154	4619	4426	16	92	77
Yanzhou	Shandong	35.57 N	N 116.85	85 E	174	4526	4412	15	92	92
Yiyuan/Nanma	Shandong	36.18 N	N 118.15	15 E	991	5093	3949	12	68	72
Datong	Shanxi	40.10 N	N 113.33	33 E	3507	7877	2512	-5	98	63

TABLE D-3 International Climatic Data (continued)

	£						Heating Design	Cooling Desig	Cooling Design Temperature
Country City	Province or Region	Latitude	Longitude	Elev., ft	HDD65	CDD50		DI y-Build	wet-Dan
							%9.66	1.0%	1.0%
(China cont.)									
Hequ	Shanxi	39.38 N	111.15 E	2825	7336	2879		68	99
Jiexiu	Shanxi	37.05 N	111.93 E	2461	5700	3285	8	68	89
Lishi	Shanxi	37.50 N	111.10 E	3120	6542	2959	1	88	99
Taiyuan/Wusu/Wusu	Shanxi	37.78 N	112.55 E	2556	9909	3132	5	88	69
Wutai Shan (Mtn)	Shanxi	39.03 N	113.53 E	9508	14,214	100	-19	63	53
Yangcheng	Shanxi	35.48 N	112.40 E	2162	5057	3714	14	88	69
Yuanping	Shanxi	38.75 N	112.70 E	2749	6705	2943	2	88	99
Yuncheng	Shanxi	35.03 N	111.02 E	1234	4433	4553	18	94	72
Yushe	Shanxi	37.07 N	112.98 E	3419	6482	2777	3	85	64
Barkam	Sichuan	31.90 N	102.23 E	8747	5419	1882	13	79	59
Batang	Sichuan	30.00 N	99.10 E	8494	3599	3267	22	85	59
Chengdu	Sichuan	30.67 N	104.02 E	1667	2708	4843	33	88	92
Da Xian	Sichuan	31.20 N	107.50 E	1020	2498	5455	34	94	78
Daocheng/Dabba	Sichuan	29.05 N	100.30 E	12,234	8614	624	4	89	49
Dawu	Sichuan	30.98 N	101.12 E	8026	6110	1639	111	77	57
Emei Shan	Sichuan	29.52 N	103.33 E	10,003	9458	381	~	61	54
Fengjie	Sichuan	31.05 N	109.50 E	1991	2889	5043	32	92	75
Garze	Sichuan	31.62 N	100.00 E	11,135	9592	991	5	72	53
Jiulong/Gyaisi	Sichuan	29.00 N	101.50 E	9823	5205	1568	18	75	55
Kangding/Dardo	Sichuan	30.05 N	101.97 E	8586	0289	1224	17	71	58
Langzhong	Sichuan	31.58 N	105.97 E	1263	2553	5192	34	92	77
Liangping	Sichuan	30.68 N	107.80 E	1493	2733	5111	33	92	77
Litang	Sichuan	30.00 N	100.27 E	12,959	9367	370	-	99	48
Luzhou	Sichuan	28.88 N	105.43 E	1102	2150	9695	38	93	78
Mianyang	Sichuan	31.47 N	104.68 E	1549	2771	4943	31	06	75
Nanchong	Sichuan	30.80 N	106.08 E	1017	2446	5422	35	93	78
Neijiang	Sichuan	29.58 N	105.05 E	1171	2235	5591	36	93	78
Pingwu	Sichuan	32.42 N	104.52 E	2877	3115	4327	30	88	7.1
Songpan/Sungqu	Sichuan	32.65 N	103.57 E	9357	7329	1094	~	74	56
Wanyuan	Sichuan	32.07 N	108.03 E	2211	3354	4305	28	06	73
Xichang	Sichuan	27.90 N	102.27 E	5246	1736	5211	35	87	92
Va'An	Sichnan	N 90 0C	103 00 E	7064	7567	6901	24	00	ť

_
rea
tin
con
ta (
Ē
E C
Ĕ
itional Climatic Data ($c\epsilon$
ona
aĦ
Internal
က
Ц С
ABLE D-3
⋖

Country City	Province or Region	Latitude	Longitude	Elev., ft	4900H	CDD50	Heating Design Temperature	Cooling Design Dry-Bulb	Cooling Design Temperature Dry-Bulb Wet-Bulb
•	D						%9.66	1.0%	1.0%
(China cont.)									
Yibin	Sichuan	28.80 N	104.60 E	1122	2043	5715	38	92	78
Youyang	Sichuan	28.83 N	108.77 E	2182	3311	4486	29	88	74
Baingoin	Tibet	31.37 N	90.02 E	15,423	12,487	70	<i>L</i> -	09	42
Dengqen	Tibet	31.42 N	95.60 E	12,710	9327	508	4	89	50
Lhasa	Tibet	29.67 N	91.13 E	11,975	0959	1433	14	75	52
Lhunze	Tibet	28.42 N	92.47 E	12,667	7949	864	∞	69	49
Nagqu	Tibet	31.48 N	92.07 E	14,790	12,539	64	-11	62	4 4
Nyingchi	Tibet	29.57 N	94.47 E	9846	5624	1610	19	73	57
Pagri	Tibet	27.73 N	89.08 E	14,111	11,576	12	-5	55	45
Qamdo	Tibet	31.15 N	97.17 E	10,850	6550	1533	10	78	55
Shiquanhe	Tibet	32.50 N	80.08 E	14,039	12,092	517	-14	70	45
Sog Xian	Tibet	31.88 N	93.78 E	13,202	10,546	316	9-	29	49
Tingri/Xegar	Tibet	28.63 N	87.08 E	14,114	9994	456	0	29	46
Xainza	Tibet	30.95 N	88.63 E	15,325	11,849	86	<u>s</u> -	62	42
Xigaze	Tibet	29.25 N	88.88 E	12,589	7635	1064	9	72	51
Akqi	Xinjiang	40.93 N	78.45 E	6516	7653	2055	0	81	57
Alar	Xinjiang	40.50 N	81.05 E	3323	5921	3882	3	92	29
Altay	Xinjiang	47.73 N	88.08 E	2418	9426	2390	-21	85	63
Andir	Xinjiang	37.93 N	83.65 E	4147	6189	3804	-	96	62
Bachu	Xinjiang	39.80 N	78.57 E	3665	5431	4284	7	94	99
Balguntay	Xinjiang	42.67 N	86.33 E	5751	6092	1963	_	81	56
Bayanbulak	Xinjiang	43.03 N	84.15 E	8908	15,010	204	-37	29	50
Baytik Shan (Mtns)	Xinjiang	45.37 N	90.53 E	5417	10,272	1357	-11	78	53
Fuyun	Xinjiang	46.98 N	89.52 E	2713	10,149	2386	-27	68	09
Hami	Xinjiang	42.82 N	93.52 E	2425	6518	3926	-	95	99
Hoboksar	Xinjiang	46.78 N	85.72 E	4245	9445	1739	6-	81	57
Hotan	Xinjiang	37.13 N	79.93 E	4511	6905	4215	12	92	99
Jinghe	Xinjiang	44.62 N	82.90 E	1053	7844	3610	-15	94	69
Kaba He	Xinjiang	48.05 N	86.35 E	1752	9156	2491	-20	87	99
Karamay	Xinjiang	45.60 N	84.85 E	1404	7867	4225	-14	95	63
Kashi	Xinjiang	39.47 N	75.98 E	4236	5421	3784	∞	06	99
Korla	Xinjiang	41.75 N	86.13 E	3061	5680	4212	7	93	99

TABLE D-3 International Climatic Data (continued)

Country Province or Region (China cont.) Xinjiang Kuqa Xinjiang Mangnai Xinjiang Pishan Xinjiang Qijaojing Xinjiang Qijaojing Xinjiang Ruoqiang Xinjiang Ruoqiang Xinjiang Shache Xinjiang Tacheng Xinjiang Tikanlik Xinjiang Tikanlik Xinjiang Yinnan Xinjiang Yinning Xinjiang Yinnan Yunnan Huili Yunnan Lijing Yunnan Yunnan Yunnan Lincang Yunnan Yunnan Yunnan Yunnan Yunnan	Latitude L. 41.72 N 8; 38.25 N 9; 43.48 N 9; 44.02 N 8; 44.02 N 8; 46.73 N 8; 40.63 N 8; 43.78 N 8; 43.78 N 8; 43.27 N 9; 25.02 N 10	Longitude 82.95 E 90.85 E 78.28 E 91.63 E 89.57 E 88.17 E 77.27 E 83.00 E 83.00 E 87.70 E 83.40 E 84.70 E	Elev., ft 3609 9662 4514 2867	HDD65	CDD50	Temperature 99.6%	Dry-Bulb Wet-Bulb 1.0%	Wet-Bulb
g aturuk n n Menglangba Menglangba	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		3609 9662 4514 2867	0000		%9.66	1.0%	1.0%
g aturuk g g g g g g g n n N Menglangba			3609 9662 4514 2867	r c				
aturuk n ng ,/Wujiaba 'Menglangba	z z z z z z z z z z z z z z z z z		3609 9662 4514 2867	000				
aturuk n ng ;/Wujiaba :/Menglangba	z z z z z z z z z z z z z z z	3.85 E 8.28 E 1.63 E 9.57 E 8.17 E 7.27 E 7.70 E 1.33 E 1.33 E 1.33 E 1.33 E 1.34 E 1.35 E 1.	9662 4514 2867	5/03	3945	9	91	64
aturuk n ng (/Wujiaba //Wenglangba	z z z z z z z z z z z z z z	8.28 E 1.63 E 9.57 E 8.17 E 3.00 E 7.70 E 7.70 E 1.33 E 4.70 E	4514 2867	10,445	727	-3	92	48
aturuk n n n n ig //Wujiaba //Wenglangba	z z z z z z z z z z z z z	1.63 E 8.17 E 8.17 E 8.17 E 7.27 E 9.20 E 7.70 E 1.33 E 1.33 E 4.70 E	2867	5337	4071	8	93	65
aturuk n ng ,/Wujiaba 'Menglangba	z z z z z z z z z z z z	9.57 E 8.17 E 7.27 E 7.70 E 7.70 E 7.70 E 7.40 E		7117	3691	-2	95	09
aturuk n ng ,/Wujiaba 'Menglangba	z z z z z z z z z z z	8.17 E 7.27 E 3.00 E 7.70 E 7.62 E 1.33 E 4.70 E	2605	8861	2793	-20	06	63
aturuk n ng y.Wujiaba Menglangba	z z z z z z z z z z	7.27 E 3.00 E 7.70 E 9.20 E 7.62 E 1.33 E	2917	5751	4280	5	86	99
aturuk n ng y/Wujiaba 'Menglangba	z z z z z z z z	3.00 E 7.70 E 9.20 E 1.33 E 4.70 E	4042	5408	3871	6	91	99
aturuk n ng ng ,/Wujiaba 'Menglangba	z z z z z z z	7.70 E 9.20 E 7.62 E 1.33 E 4.70 E	1755	7772	2834	-11	06	64
aturuk n ng ,/Wujiaba 'Menglangba	z z z z z z	9.20 E 7.62 E 1.33 E 4.70 E	2779	6093	4132	1	96	29
aturuk n ng ng ;/Wujiaba Menglangba	zzzzz	7.62 E 1.33 E 4.70 E	121	5256	86038	7	104	70
aturuk B n ng ;;/Wujiaba 'Menglangba	zzzz	1.33 E 4.70 E	3015	8214	3015	<u></u>	68	61
aturuk n ng ,/Wujiaba 'Menglangba	zzz	4.70 E	2175	6617	3085	8-	68	99
n ng ;/Wujiaba 'Menglangba	z z		5673	9362	1538	L-	78	99
n ng iy Wujiaba 'Menglangba	Z	99.22 E	5430	2150	4324	34	81	99
n ng ;/Wujiaba :/Menglangba		101.53 E	5817	2102	4413	33	82	63
n ng ,/Wujiaba 'Menglangba	25.70 N 10	100.18 E	6535	2398	3815	34	79	64
n ng	28.50 N 98	98.90 E	11,444	7883	899	18	99	53
ng ;/Wujiaba Menglangba	24.07 N 10	105.07 E	4104	1837	5381	33	85	29
ng ;/Wujiaba :/Menglangba	26.65 N 10	102.25 E	2866	2471	4074	30	82	64
ng	26.42 N 10	103.28 E	6923	3522	3015	25	78	62
,/Wujiaba /Menglangba	22.62 N 10	101.82 E	3678	757	6438	42	85	89
yWujiaba Menglangba 	22.02 N 10	100.80 E	1814	92	9106	49	93	72
Menglangba	25.02 N 10	102.68 E	6207	2461	3766	33	79	63
SI,	22.57 N 99	99.93 E	3458	491	7158	41	88	99
SI	26.83 N 10	100.47 E	7854	3389	2818	30	92	09
giib	23.95 N 10	100.22 E	4931	1131	5588	39	83	64
	24.53 N 10	103.77 E	5604	2254	4341	31	81	63
	23.57 N 99	99.08 E	1680	168	8782	46	93	72
Mengla	21.50 N 10	101.58 E	2077	133	9898	47	91	72
Mengzi	23.38 N 10	103.38 E	4272	947	6397	39	98	99
Ruili Yunnan	24.02 N 97	97.83 E	2546	478	7544	43	88	70
Simao Yunnan	22.77 N 10	100.98 E	4275	962	6251	42	85	64

TABLE D-3 International Climatic Data (continued)

Constrict Constrict Province or Ageing Latifude Latifude DRe-, II 1107hole CO195 Among particle Department program Province or Ageing Latifude DRe-, II 1107hole CO195 Ageing Latifude Dre-, II Ageing Ageing Ageing Latifude Dre-, II Ageing Ageing <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Hosting Decien</th> <th>Cooling Design</th> <th>n Tomnoroturo</th>								Hosting Decien	Cooling Design	n Tomnoroturo
Ordinal 23.1 9.8.8 6 5410 2.66 4008 34 78 org Viniman 23.1 N 19.38 E 5410 2.66 4008 34 78 78 org Viniman 22.30 N 10.38 E 3675 3676 3676 44 99.7 98.8 org Viniman 22.30 N 10.38 E 10.34 22.50 30.3 8 .0 98.8 98.8 98.8 98.8 98.8 98.8 99.9 99.8	Country City	Province or Region	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Wet-Bulb
outb Winnam 25.12 N 94.84 E 5410 2161 4008 34 78 auge Vinnam 25.57 N 101.87 E 3675 516 4008 448 978 au Vinnam 25.57 N 101.87 E 3675 518 8165 44 95 g Vinnam 25.57 N 101.87 E 3675 368 48 98 bland Vinnam 25.53 N 101.87 E 254 257 34 88 bland Zhejing 30.13 12.18 E 276 297 34 97 Shan Zhejing 30.23 10.12 E 408 55.33 36 97 Shan Zhejing 20.20 N 12.02 E 440 25.93 31.55 31 37 91 All Zhejing 20.20 N 1								%9.66	1.0%	1.0%
ugg Yummu 25,12 N 94,48 E 5410 2166 4018 34 78 ugg Yummu 25,61 N 10,39 E 347 50,67 316 41 98 u Yummu 25,53 N 10,33 E 36,73 50,73 316 41 99 g Yummu 25,53 N 10,33 E 36,73 30,73 31,73 98 sland Zhejing 25,43 N 12,21 E 171 2709 5158 31 89 sland Zhejing 26,23 N 12,21 E 171 2709 5158 31 89 sland Zhejing 26,23 N 12,21 E 171 2709 5158 31 89 sland Zhejing 26,23 N 17,22 E 276 278 31 77 77 sland Zhejing 26,23 N 17,22 E 276 279	(China cont.)									
tig Vimman 23.60 1 01.93 E 1366 166 98.86 4.8 98 a Vimman 23.51 N 10.83 E 36.34 50.36 816.5 4.9 98 g Vimman 25.53 N 10.83 E 63.94 40.60 37.3 9.0 80 bland Zhojiung 28.43 N 12.88 E 63.94 40.60 37.3 9.0 80 shand Zhojiung 28.43 N 12.01 E 141 20.99 51.83 31 80 shand Zhojiung 28.43 N 19.92 E 141 20.99 51.83 19 98 shand Zhojiung 28.43 N 19.92 E 23.11 60.65 3.4 89 98 shand Zhojiung 28.43 N 19.92 E 23.4 24.2 31.8 98 98 chandling 2.0 N 18.87 E 26.6<	Tengchong	Yunnan			5410	2161	4008	34	78	64
at Vinnant 25.73 I OL8 7 E 56.75 51.03 66.52 45.55 51.03 66.52 45.55 816.5 44 95.5 gl Vinnant 25.58 N 10.35 E 62.24 25.65 385.5 30 89 foliand Zhojiang 27.34 N 10.35 E 27.6 466 34 84 86 s/Man Zhojiang 30.35 N 12.12 E 121 30.99 51.35 31 88 s/Man Zhojiang 30.35 N 12.01 E 44.98 54.90 51.35 93 95 s/Man Zhojiang 23.65 N 118.35 E 42.3 42.1 30.9 31 89 77 s/man Zhojiang 23.65 N 118.35 E 43.2 23.7 42.1 23.6 31 89 s/man Zhojiang 23.95 N 12.45 E 23.2 42.1 23.2	Yuanjiang	Yunnan			1306	166	9886	48	86	75
synthmen 25.5 N 10.08.3 E 6234 2256 385 30 80 Shand Oxenan 25.5 N 10.08.3 E 6238 406 34 34 80 Shand Dxejimag 28.45 N 11.21.8 E 121 270 35.3 31 80 Shand Dxejimag 28.45 N 11.21.8 E 121 270 31 80 Shan Dxejimag 28.45 N 11.902 E 201 235 31 80 35 95 Shan Dxejimag 28.45 N 11.932 E 403 231 30 90 95 Shan Dxejimag 28.95 N 11.783 E 403 231 30 90 90 And Dxejimag 28.95 N 11.783 E 200 842 203 490 31 80 Shan Dxejimag 28.95 N 11.783 E 2421 2135 213 81 And Dxejimag 29.90	Yuanmou	Yunnan			3675	503	8165	41	93	29
glant Vinimon 27.31 N 104.75 E 6598 4462 2977 23 80 stand Zacjung 23.45 N 12.12 E 121 2799 4966 34 84 wu/kmajao Zacjung 30.23 N 12.12 E 121 2799 51.88 28 30 84 sthan Zacjung 28.2 N 120.17 E 141 3069 5353 28 95 sthan Zacjung 28.2 N 110.21 E 143 3069 5353 28 95 chum Zacjung 28.2 N 110.82 E 462 279 3158 95 tum Zacjung 27.9 N 110.92 E 23.3 211 C 279 3158 97 tum Zacjung 27.9 N 12.05 E 34 450 54.1 37 97 tum Zacjung 27.0 N 12.07 E 34 32 12.1 37 34 34 sha	Zhanyi	Yunnan			6234	2526	3855	30	80	61
Shand Zhojiang 28,45 N 21,38 E 276 2708 4966 34 84 84 84 84 84 84 84	Zhaotong	Yunnan			8689	4062	2977	23	80	63
Shann Cheyinng 20,03 N 12,12 E 121 C799 5158 31 88	Dachen Island	Zhejiang		121.88 E	276	2708	4966	34	8	80
Netherape Diagrams 20, 21 Miles and 22 Miles	Dinghai	Zhejiang		122.12 E	121	2799	5158	31	88	80
Shant	Hangzhou/Jianqiao	Zhejiang		120.17 E	141	3069	5353	28	95	81
hun Zhejiang 28.45 N 11992 E 203 2311 6205 30 96 Cuyuanzhen Zhejiang 27.95 N 11.88 E 4321 3155 19 77 Cuyuanzhen Zhejiang 37.95 N 12.85 E 236 2953 4905 31 87 nu Zhejiang 30.50 N 12.08 E 296 2955 4905 31 87 Shan (Mus) Zhejiang 30.20 N 12.08 E 447 2786 5166 31 88 Shan (Mus) Zhejiang 30.20 N 12.05 E 447 2786 5166 31 88 Shan (Mus) Zhejiang 30.5 N 12.05 E 44902 6115 5225 11 75 Ang (Mus) As 30.00 31.58 7 1452 6028 37 89 As (S) <td>Kuocang Shan</td> <td>Zhejiang</td> <td></td> <td>120.92 E</td> <td>4498</td> <td>5430</td> <td>2585</td> <td>13</td> <td>77</td> <td>70</td>	Kuocang Shan	Zhejiang		120.92 E	4498	5430	2585	13	77	70
ham Zhejiang 27.95 N 117.83 E 4623 4321 3155 19 77 Caiyamazhen Zhejiang 28.97 N 118.87 E 233 2724 5740 30 95 Caiyamazhen Zhejiang 29.07 N 12.45 E 246 2999 5431 27 94 an Zhejiang 29.07 N 12.02 E 344 2999 5431 27 94 An Zhejiang 29.07 N 12.02 E 344 2999 5431 27 94 An Zhejiang 29.07 N 12.02 E 348 2271 524 38 85 Shan (Mas) 28.02 N 10.67 E 23 210 67 91 An As 10.50 E 34 75 145 67 92 As As 32.08 7	Lishui	Zhejiang		119.92 E	203	2311	6205	30	96	79
Cacyonarchen Zhejiang 28.97 I 18.87 E 233 2724 5740 30 95 nn Zhejiang 20.73 N 12245 E 266 2955 4905 31 87 nn Zhejiang 29.60 N 12245 E 266 2955 4905 31 87 Zhejiang 29.00 N 12145 E 440 278 5166 31 88 Shan (Mins) Zhejiang 29.00 N 12045 E 4902 6115 2225 11 75 shan (Mins) Zhejiang 28.02 N 12045 E 4902 6115 2225 11 75 amo Bay NAS Oc. 1 1942 E 23 2104 5981 34 85 ambias 24.58 3 2.458 3 2.458 3 2.458 3 2.456 7 1452 60.28 37 91 bus 3 3.458 3 3.458 3 2.45 3 2.45	Qixian Shan	Zhejiang		117.83 E	4623	4321	3155	19	77	70
Calyanarchen Zhejiang 30.73 N 122.45 E 266 2955 4905 31 87 nn Zhejiang 25.60 N 120.42 E 354 2999 5431 27 94 Zhejiang 27.00 N 121.95 E 417 2895 5166 31 88 Shan (Muss) Zhejiang 27.00 N 120.76 E 4902 6115 2225 11 75 amo bay NAS Ote. 19.90 7.15.18 7 1247 59 7 11.719 67 91 amo bay NAS Ote. 19.90 75.15 W 75 1287 647 90 91 amo bay NAS Ote. 19.90 75.15 W 75 1287 647 90 91 amb bay Assa N 35.65 B 7 1452 60.28 37 91 92 bb.s. Assa N 35.65 B 35.04 B <td>Qu Xian</td> <td>Zhejiang</td> <td></td> <td>118.87 E</td> <td>233</td> <td>2724</td> <td>5740</td> <td>30</td> <td>95</td> <td>80</td>	Qu Xian	Zhejiang		118.87 E	233	2724	5740	30	95	80
Chejiang 29,60 N 120,82 E 354 2999 5431 27 94 Chejiang 29,20 N 121,95 E 417 2785 5166 31 88 Shan (Mns) Zhejiang 27,00 N 120,70 E 348 2271 5424 38 85 Shan (Mns) Zhejiang 27,00 N 120,70 E 234 5166 31 88 Shan (Mns) Zhejiang 27,00 N 120,70 E 234 511 75 Amo Bay NAS Oic 19,90 N 75,15 W 75 014 5981 34 91 Shan (Mns) Shan (Mns) 27,00 N 27,15 W 75 014 5981 34 91 Shan (Mns) Shan (Mns) 27,10 N 27,15 W 75 014 20,25 11 75 Shan (Mns) 34,88 N 32,48 E 75 1287 6147 40 89 Shan (Mns) 34,88 N 33,63 E 75 1287 6147 40 89 Shan (Bay Ubic Former Czechoslovakia) 34,75 N 32,40 E 24 25,67 N 31,40 E 24 28 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 32,40 E 28 28 28 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 31,40 E 24 28 28 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 32,40 E 28 34 39 34 39 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 31,40 E 24 38 34 39 34 39 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 32,40 E 38 34 39 34 39 34 38 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 32,40 E 38 34 39 38 34 38 34 38 Shan (Bay Ubic Former Czechoslovakia) 30,13 N 32,40 E 38 34 39 38 34 38 34 38 34 38 34 38 34 38 34 38 34 38 38	Shengsi/Caiyuanzhen	Zhejiang		122.45 E	266	2955	4905	31	87	79
Zhejiang 29,20 N 121,95 E 417 2785 5166 31 88 Shan (Mus) Zhejiang 27,00 N 120,70 E 348 2271 5424 38 85 Shan (Mus) Zhejiang 27,00 N 120,70 E 348 2271 5424 38 85 amo Bay NAS Ore. 19,90 N 75.15 W 75 1044 5981 40 89 amo Bay NAS Ore. 19,90 N 75.15 W 75 1287 6147 40 89 amo Bay NAS 34,58 N 35.38 R 35.38 R 7 1452 6028 37 91 amo Republic (Former Czechosłowakia) 33.63 E 7 1452 6028 37 91 a. Republic (Former Czechosłowakia) 18.47 N 69.88 W 43 0 10,862 37 80 a. Republic (Former Czechosłowakia) 18.47 N 69.88 W 43 0 10,862	Shengxian	Zhejiang		120.82 E	354	2999	5431	27	94	80
Shan (Mms) Zhejiang 27.00 N 120.70 E 348 2271 5424 38 85 1 Zhejiang 30.35 N 119.42 E 4902 6115 2225 11 75 amo Bay NAS One. 19.90 N 75.15 W 75 104 591 91 amo Bay NAS One. 19.90 N 75.15 W 75 1287 6147 40 89 ambigo 34.88 N 33.63 E 7 1452 6028 37 91 ava Republic 34.75 N 32.40 E 30 1279 5924 39 86 ava Republic 34.75 N 32.40 E 30 1279 5924 39 86 mingo 18.47 N 69.88 W 43 7 10.862 N.A. N.A. Scoron N 113 N 32.70 E 289 81 7993 45 97 Scoron N 32.70 E 289 81	Shipu	Zhejiang		121.95 E	417	2785	5166	31	88	80
Shan (Mins) Zhejiang 30.35 N 1194 Z E 4902 6115 2225 11 75 amo Bay NAS Ote. 19.90 N 75.15 W 75 1287 6147 69 91 equblic (Former Czechoslovakia) 34.88 N 32.98 E 75 1287 6147 40 89 a. hubiic (Former Czechoslovakia) 34.75 N 32.40 E 30 1279 5924 39 86 a. in Republic 50.00 N 1445 E 1001 6376 1833 3 80 omingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. Scortula 60.32 N 24.97 E 28 96 10,862 N.A. 97 Scutula 60.32 N 24.97 E 167 9051 113 11 75	Taishan	Zhejiang		120.70 E	348	2271	5424	38	85	79
amo Bay NAS Ore. 19.90 N 75.15 W 75 00. 11,719 67 91 and Bay NAS Ore. 19.90 N 75.15 W 75 104 5981 34 91 and Bay NAS Ore. 19.90 N 75.15 W 75 104 591 at san Republic (Former Czechostovakia) and Republic Arrivation omingo and Republic Arrivation of So.13 N 14.45 E 1001 6376 1853 3 80 and Republic Arrivation of So.13 N 2.70 E 249 594 40 1088 and Republic Arrivation of So.25 N 24.75 N 32.70 E 289 581 9849 40 1088 and Republic Arrivation of So.25 N 32.70 E 289 581 9849 40 1088 and Republic Arrivation of So.25 N 24.97 E 167 9051 1138 -11 75	Tianmu Shan (Mtns)	Zhejiang		119.42 E	4902	6115	2225	11	7.5	69
amo Bay NAS Ore. 1990 N 75.15 W 75 0 11,719 67 93 34.58 N 32.98	Wenzhou	Zhejiang			23	2104	5981	34	91	81
amo Bay NAS Oce. 19.90 N 75.15 W 75 1287 6147 40 89 epublic Former Czechoslovakia) 34.58 N 32.98 E 75 1287 6147 40 89 epublic Former Czechoslovakia) 34.75 N 32.40 E 30 1279 5924 39 86 an Republic 36.00 N 14.45 E 1001 6376 1853 3 80 omingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. Scutula 30.13 N 31.40 E 243 581 9849 45 97 Scutula 60.32 N 24.07 E 167 9651 1138 -11 75	Cuba									
Septemblic (Former Czechoslovakia) 34.58 N 32.98 E 75 1287 6147 40 89 sepublic (Former Czechoslovakia) 34.75 N 32.40 E 7 1452 6028 37 91 s.ibus 3a. Republic 50.00 N 1445 E 1001 6376 1853 3 86 mingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. N.A. Scutula 30.13 N 31.40 E 243 834 7993 45 97 Scutula 60.32 N 24.97 E 167 9051 1138 -11 75	Guantanamo Bay NAS	Ote.	19.90 N	75.15 W	75	0	11,719	29	93	78
Sepublic (Former Czechoslovakia) 34.58 N 32.98 E 75 1287 6147 40 89 sepublic (Former Czechoslovakia) 34.75 N 32.98 E 7 1452 60.28 37 91 can Republic 50.00 N 14.45 E 1001 63.76 1853 3 80 can Republic 60mingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. N.A. Soluting 30.13 N 31.40 E 243 834 7993 45 97 Setutula 60.32 N 24.97 E 167 9051 1138 -11 75	Cyprus									
cepublic (Former Czechoslovakia) 34.75 N 33.63 E 7 1452 b 60.28 b 37 bl 91 bl cibus schublic (Former Czechoslovakia) 50.00 N 14.45 E 1001 bl 6376 bl 1853 bl 3 bl 80 bl can Republic omingo 18.47 N 69.88 W 43 bl 0 bl 10,862 bl N.A. N.A. N.A. 30.13 N 31.40 E 243 bl 834 bl 7993 bl 45 bl 97 bl /Seutula 60.32 N 24.97 E 167 bl 9051 bl 1138 bl 1108 bl	Akrotiri		34.58 N	32.98 E	75	1287	6147	40	68	72
cepublic (Former Czechoslovakia) 34.75 N 32.40 E 30 1279 5924 39 86 Libus So.00 N 14.45 E 1001 6376 1853 3 80 can Republic Comingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. N.A. somingo 30.13 N 31.40 E 243 834 7993 45 97 /Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Larnaca		34.88 N	33.63 E	7	1452	6028	37	91	72
Republic (Former Czechoslovakia) 50.00 N 14.45 E 1001 6376 1853 3 80 ALibus nican Republic 18.47 N 69.88 W 43 0 10,862 N.A. N.A. Domingo 30.13 N 31.40 E 243 834 7993 45 97 S.5.67 N 32.70 E 289 581 9849 40 108 Md ki/Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Paphos		34.75 N	32.40 E	30	1279	5924	39	98	92
Automate 50.00 N 14.45 E 1001 6376 1853 3 80 Domingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. 30.13 N 31.40 E 243 834 7993 45 97 25.67 N 32.70 E 289 581 9849 40 108 ki/Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Czech Republic (Former Czechoslovakia)									
nican Republic Domingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. N.A. 30.13 N 31.40 E 243 834 7993 45 97 25.67 N 32.70 E 289 581 9849 40 108 ki/Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Prague/Libus		50.00 N	14.45 E	1001	6376	1853	3	80	64
Domingo 18.47 N 69.88 W 43 0 10,862 N.A. N.A. 30.13 N 31.40 E 243 834 7993 45 97 25.67 N 32.70 E 289 581 9849 40 108 ki/Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Dominican Republic									
30.13 N 31.40 E 243 834 7993 45 97 25.67 N 32.70 E 289 581 9849 40 108 ki/Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Santo Domingo		18.47 N	W 88.69	43	0	10,862	N.A.	N.A.	N.A.
30.13 N 31.40 E 243 834 7993 45 97 25.67 N 32.70 E 289 581 9849 40 108 ki/Seutula 60.32 N 24.97 E 167 9051 1138 -11 75	Egypt									
25.67 N 32.70 E 289 581 9849 40 108 60.32 N 24.97 E 167 9051 1138 –11 75	Cairo		$30.13 \mathrm{N}$	31.40 E	243	834	7993	45	26	69
60.32 N 24.97 E 167 9051 1138 –11 75	Luxor		25.67 N	32.70 E	289	581	9849	40	108	71
60.32 N 24.97 E 167 9051 1138 –11 75	Finland									
	Helsinki/Seutula		60.32 N	24.97 E	167	9051	1138	-11	75	61

TABLE D-3 International Climatic Data (continued)

Country	Province or	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Ory-Bulb	Dry-Bulb Wet-Bulb
City	Region		0	`			%9.66	1.0%	1.0%
France									
Lyon/Satolas		45.73 N	5.08 E	814	4930	2609	17	98	69
Marseille		43.45 N	5.22 E	26	3194	3933	25	87	70
Nantes		47.17 N	1.60 W	68	4286	2480	23	83	89
Nice		43.65 N	7.20 E	33	2641	3983	35	83	73
Paris/Le Bourget		48.97 N	2.45 E	217	5046	2211	18	82	89
Strasbourg		48.55 N	7.63 E	502	5533	2193	12	84	89
Germany									
Berlin/Schoenfeld		52.38 N	13.52 E	154	6331	1820	11	82	65
Hamburg		53.63 N	9.98 E	52	6319	1569	11	79	64
Hannover		52.47 N	9.70 E	180	6093	1730	6	80	65
Mannheim		49.53 N	8.50 E	318	5428	2262	N.A.	N.A.	N.A.
Greece									
Souda	Crete	35.55 N	24.12 E	417	1767	5472	39	06	29
Thessalonika/Mikra		40.52 N	22.97 E	26	3389	4115	25	06	69
Greenland									
Narssarssuaq		61.18 N	45.42 W	79	11,521	292	-18	62	49
Hungary									
Budapest/Lorinc		47.43 N	19.18 E	459	5534	2647	∞	98	89
Iceland									
Reykjavik		64.13 N	21.93 W	200	9886	293	14	28	52
India									
Ahmedabad		23.07 N	72.63 E	180	31	11,648	52	106	74
Bangalore		12.97 N	77.58 E	3018	2	9409	59	92	29
Bombay/Santa Cruz		19.12 N	72.85 E	26	2	11,372	62	93	74
Calcutta/Dum Dum		22.65 N	88.45 E	16	26	11,064	54	76	79
Madras		13.00 N	80.18 E	52	0	12,403	89	66	77
Nagpur Sonegaon		21.10 N	79.05 E	1014	18	11,274	53	108	71
New Delhi/Safdarjung		28.58 N	77.20 E	702	480	10,060	4	105	72
Indonesia									
Djakarta/Halimperda	Java	6.25 S	106.90 E	86	0	11,477	N.A.	N.A.	N.A.
Kupang Penfui	Sunda Island	10.17 S	123.67 E	354	2	11,686	N.A.	N.A.	N.A.
Mobacor	20 delect	2 0 2 8	110 SS E	95	,	11 481	4 7	▼ Z	× 12

TABLE D-3 International Climatic Data (continued)

nu abang aaja Perak nd nn Airport non Airport alem viv Port ston/Manley ego Bay/Sangster nr ura an	Country City	Province or Region	Latitude	Longitude	Elev., ft	HDD65	CDD50	Heating Design Temperature	Cooling Desig Dry-Bulb	Cooling Design Temperature Dry-Bulb Wet-Bulb
support Sammin 3.57 N 9.68 B 85 0 11,491 N.A. N.A. a benak Sammin 2.90 5 10,470 B 8.33 0 11,568 N.A. N.A. N.A. Alport Rosa 7.22 8 10,470 B 8.33 0 11,568 N.A. N.A. N.A. Alport Rosa 7.22 8 12,72 B 10,470 B 2.90 10,470 B 11,470 B 10,470 B	ću.)							99.6%	1.0%	1.0%
Sumatra 3.57 N 96.68 E 85 0 11,491 N.A. NA. Available Sumatra 2.50 S 11,272 E 10,710 E 13,6 NA. NA. NA. Available Sumatra 2.50 S 11,272 E 10,70 E 12,088 NA. NA. NA. NA. Available Sumatra 2.50 S 11,272 E 10,70 E 12,088 NA. NA. NA. NA. Available Sumatra 2.50 N 8, 22 N 0.66 S 10,06 1455 NA. NA. NA. NA. NA. National Available Sumatra 2.50 N 1,23 E 2,26 N 0.55 N	(Indonesia cont.)									
ang Sumatral 2.00 1 14,70 E 33 0 11,555 N.A. N.A. Adeport Jona 72.2 S 11,27 E 10 0 12,688 N.A. N.A. Adeport 53.4 N 6.25 W 29 500 1455 29 60 Adeport 52.68 N 6.25 W 66 5106 1455 29 60 Adeport 52.68 N 6.22 E 586 2423 4609 33 60 Port 12.10 N 34.78 E 351 4609 33 86 Adelos 12.10 N 34.78 E 351 4609 33 86 Adelos 12.10 N 34.78 E 351 4609 33 86 Adelos N 14.39 E 245 245 351 47 87 Adelos N 15.23 E 15.24 473 37 37 <td>Medan</td> <td>Sumatra</td> <td></td> <td></td> <td>85</td> <td>0</td> <td>11,491</td> <td>N.A.</td> <td>N.A.</td> <td>N.A.</td>	Medan	Sumatra			85	0	11,491	N.A.	N.A.	N.A.
Alphorite diversity divers	Palembang	Sumatra			33	0	11,565	N.A.	N.A.	N.A.
Adjoint Adjoint S3.45 N 6.25 W 779 S507 1276 29 69 Adjoint Adjoint S2.68 N 8.92 W 66 5106 1455 28 77 77 77 Adjoint S2.68 N 8.92 W 66 5106 1455 28 77 77 77 77 77 78 77 78 78 78 78 78 78	Surabaja Perak	Java			10	0	12,088	N.A.	N.A.	N.A.
Auriport 53.44 N 6.25 W 679 5507 1276 29 60 60 a Auriport 52.68 N 8.22 W 66 5106 1455 28 78 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ireland									
no Authorist	Dublin Airport				279	5507	1276	29	69	61
Front that the color of the col	Shannon Airport				99	5106	1455	28	71	63
mm 31.78 N 35.22 E 2654 2423 4609 33 86 Port 32.10 N 34.78 E 351 460 333 44 86 Linane 45.43 N 928 E 351 450 333 21 86 Linane 40.88 N 1430 E 256 2658 4301 32 86 mincino 40.88 N 1430 E 256 2658 4173 30 89 n Bay/Sangster 17.53 N 76.78 W 46 0 11,800 71 98 a Bay/Sangster 18.50 N 77.92 W 46 0 11,800 71 99 b Bay/Sangster 18.50 N 77.92 W 46 0 11,800 71 99 1 Apper 40.85 N 13.93 E 218 252 2933	Israel									
report 32.10 N 34.78 E 351 455 6851 44 86 Linate 45.31 8 45.70 3335 21 87 Capodichino 40.88 N 14.30 E 25.6 26.84 401 32 89 and manicino 41.80 N 15.23 E 7 26.84 4173 30 89 and manicino 41.80 N 75.23 W 46 0 11.860 71 98 a paySangster 18.50 N 75.24 W 46 0 11.860 71 98 1 40.55 N 75.24 W 46 6.75 25.32 25.18 70 90 1 41.35 E 25.6 55.2 29.33 30 91 1 41.35 E 25.6 27.3 27.3 27.3 27.3 27.3 27.3 27.3	Jerusalem				2654	2423	4609	33	98	64
Linnine 45.43 N 9.28 E 351 4507 3335 21 87 Capodichino 40.88 N 14.30 E 236 2658 4501 32 87 a numicino 40.88 N 14.30 E 236 2658 4791 30 86 a a no/Manley 17.93 N 76.78 W 46 0 11.860 71 98 no/Manley 18.50 N 77.92 W 46 0 11.860 71 98 anyManley 18.50 N 77.92 W 3 1 10.915 70 90 1. 44.05 N 14.05 N 14.03 E 22.3 23.28 23.28 23.28 23.28 23.3 88 Amport 31.88 N 15.30 E 23.6 12.30 35.6 NA. 35.6 NA. <tr< td=""><td>Tel Aviv Port</td><td></td><td></td><td></td><td>33</td><td>955</td><td>6851</td><td>44</td><td>98</td><td>74</td></tr<>	Tel Aviv Port				33	955	6851	44	98	74
Linate Capoticition 45.43 N 9.28 E 351 4507 3335 21 87 Yell Capoticition 40.88 N 143.0 E 236 2658 4301 32 89 Separations 41.80 N 12.23 E 7 268 4301 32 89 Separations 41.80 N 12.23 E 7 268 4301 32 89 Separations 41.80 N 12.23 E 23.8 H 4773 N 18.80	Italy									
Capacidistino 40.88 N 14.30 E 236 2658 4501 32 89 Similarino A N 12.23 E 7 2684 4173 30 86 Autharilop N 17.33 N 67.8 N 46 0 11,860 71 98 a day/Sangster 18.50 N 77.92 W 46 0 11,860 71 98 a day/Sangster 40.65 N 77.92 W 46 0 11,800 71 99 b day/Sangster 40.65 N 41.33 E 223 522 2233 30 90 1 31.8 N 14.13 E 216 523 2449 31 81 Airport 31.8 N 13.9 E 23.2 23.3 44 49 81 Airport 31.8 N 13.9 E 23.2 23.	Milano/Linate				351	4507	3335	21	87	72
and Manule obligation of the field	Napoli/Capodichino				236	2658	4301	32	68	73
and Mannley 17.93 N 76.78 W 46 0 11.860 71 98 and Mannley 18.50 N 77.92 W 3 1 10.915 70 90 and Sylkangster 40.65 N 17.92 W 77.92 W 35.22 2933 30 91 and 43.05 N 141.33 E 223 25.88 47.49 31 88 Airport 1.35 N 139.77 E 118 2986 47.49 31 88 Airport 1.32 N 139.77 E 118 2986 47.49 31 88 Airport 1.32 N 135.9 E 2516 2337 5427 33 92 and 3 1.26.9 E 2528 507 926 N.A. N.A. N.A. and 3 N 10.6.7 E 282 500	Roma/Fiumicino				7	2684	4173	30	98	74
nd/Manley 17.34 N 76.78 W 46 0 11,860 71 98 10 Bay/Sangster 18.50 N 77.92 W 3 1 10,915 70 90 11 All All All All All All All All All A	Jamaica									
b Bay/Sangster 18.50 N 77.92 W 3 1 1 10.915 70 90 1 2.0 Bay/Sangster 18.50 N 139.93 E 223 5522 2933 30 91 1 3.0 R 14.33 E 56 6753 2518 12 881 1 3.0 R 13.77 E 118 2986 4749 31 88 Airport Airport 1.32 S 36.93 E 2516 237 5427 33 92 ang ang ang ang ang ang binaturapas	Kingston/Manley				46	0	11,860	71	86	78
1 40.65 N 139.93 E 223 5522 2933 30 91 1 43.05 N 141.33 E 56 6753 2518 12 81 1 35.68 N 139.77 E 118 2986 4749 31 88 Airport 31.98 N 35.98 E 2516 2337 5427 33 92 ang 38.40 N 127.30 E 1217 6735 2840 3 85 ang 37.57 N 126.97 E 282 5007 3956 N.A. N.A. Bayan Lepas 5.30 N 10.27 E 10 0 11,472 N.A. N.A. City Distrito Federal 19.40 N 9.20 N 7572 1203 4762 39 82	Montego Bay/Sangster				3	1	10,915	70	06	79
40.65 N 139.93 E 223 5522 2933 30 91 43.05 N 143.05 E 56 6753 2518 12 81 35.68 N 139.77 E 118 2986 4749 31 88 ort 31.98 N 139.77 E 2516 2337 5427 33 92 ort 1.32 S 36.93 E 2516 233 6177 49 83 ur 38.40 N 127.30 E 1217 6735 2840 3 85 ur 31.35 N 126.97 E 282 5007 3956 N.A. N.A. ur 5.30 N 100.27 E 10 11,472 N.A. N.A. Distrito Federal 19.40 N 92.0 W 7572 1203 4762 39 82	Japan									
43.05 N 141.33 E 56 6753 2518 12 81 35.68 N 139.77 E 118 2986 4749 31 88 ort 31.98 N 135.98 E 2516 2337 5427 33 92 ort 1.32 S 36.93 E 2516 2337 6177 49 83 ur 38.40 N 127.30 E 1217 6735 2840 3 85 37.57 N 126.97 E 282 5007 3956 N.A. N.A. N.A. n Lepas 5.30 N 10.55 E 56 0 11,472 N.A. N.A. N.A. Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Fukaura				223	5522	2933	30	91	78
ort 31.98 N 139.77 E 118 2986 4749 31 88 ort 31.98 N 35.98 E 2516 2337 5427 33 92 ort 1.32 S 36.93 E 5328 273 6177 49 83 ur 38.40 N 127.30 E 1217 6735 2840 3 85 37.57 N 126.97 E 282 5007 3956 N.A. N.A. N.A. nn Lepas 5.30 N 101.55 E 56 0 11,530 71 93 nn Lepas Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Sapporo				56	6753	2518	12	81	71
ort ort 1.32 S 36.93 E 2516 2337 5427 33 92 92 92 92 92 92 92 93 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	Tokyo				118	2986	4749	31	88	77
ort Ottom	Jordan									
ort Ott All Distrito Federal 19.40 N 19.20 W 7572 1203 E 5328 273 6177 49 83 85 85 85 870 273 6177 49 83 85 85 85 867 2840 3 956 N.A. N.A. N.A. N.A. N.A. Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 85 85 85 85 85 85 85 85 85 85 85 85 85	Amman				2516	2337	5427	33	92	65
ort 1.32 S 36.93 E 5328 273 6177 49 83 38.40 N 127.30 E 1217 6735 2840 3 85 37.57 N 126.97 E 282 5007 3956 N.A. N.A. N.A. ur 3.13 N 101.55 E 56 0 11,530 71 93 Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Kenya									
ur 37.57 N 126.97 E 1217 6735 2840 3 85 85 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A	Nairobi Airport				5328	273	6177	49	83	09
ur 37.57 N 126.97 E 1217 6735 2840 3 85 ur 37.57 N 126.97 E 282 5007 3956 N.A. N.A. N.A. ur 3.13 N 101.55 E 56 0 11,530 71 93 s.30 N 100.27 E 10 0 11,472 N.A. N.A. Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Korea									
ur 3.13 N 101.55 E 56 0 11,530 71 93 Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Pyonggang				1217	6735	2840	3	85	74
ur A. S.	Seoul				282	5007	3956	N.A.	N.A.	N.A.
ur Jepas 3.13 N 101.55 E 56 0 11,530 71 93 In Lepas 5.30 N 100.27 E 10 0 11,472 N.A. N.A. Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Malaysia									
in Lepas 5.30 N 100.27 E 10 0 11,472 N.A. N.A. Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Kuala Lumpur				56	0	11,530	71	93	78
Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Penang/Bayan Lepas				10	0	11,472	N.A.	N.A.	N.A.
Distrito Federal 19.40 N 99.20 W 7572 1203 4762 39 82	Mexico									
	Mexico City	Distrito Federal			7572	1203	4762	39	82	57

TABLE D-3 International Climatic Data (continued)

									Heating Design	Cooling Design Temperature	1 Temperature
Country City	Province or Region	Latitude		Longitude	de	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Wet-Bulb
									%9.66	1.0%	1.0%
(Mexico cont.)											
Guadalajara	Jalisco	20.67	N 10	103.38	W	5213	701	6121	N.A.	N.A.	N.A.
Monterrey	Nuevo Laredo	25.87	N 10	100.20	W	1476	844	8326	N.A.	N.A.	N.A.
Tampico	Tamaulipas	22.22	N 9	97.85	W	39	216	0286	50	06	80
Veracruz	Veracruz	19.15	6 Z	96.12	W	52	17	10,006	57	92	80
Merida	Yucatan	20.98	% Z	89.65	W	30	10	11,122	57	86	92
Netherlands											
Amsterdam/Schiphol		52.30	Z 4	4.77	Ε	-13	5691	1619	17	77	65
New Zealand											
Auckland Airport		37.02	S 17	174.80	Ξ	23	2242	3650	35	76	99
Christchurch		43.48	S 17	172.55	田	118	4359	2115	28	62	61
Wellington		41.28	S 17	174.77	Е	420	3597	2258	35	71	63
Norway											
Bergen/Florida		60.38	Z S	5.33	E	128	6882	1014	16	89	57
Oslo/Fornebu		59.90	Z	10.62	E	52	8020	1331	0	77	62
Pakistan											
Karachi Airport		24.90	,9 N	67.13	E	75	1155	11,049	N.A.	N.A.	N.A.
Papua New Guinea											
Port Moresby		9.43	S 14	147.22	E	92	2	11,272	N.A.	N.A.	N.A.
Paraguay											
Asuncion/Stroessner		25.27	S S	57.63	W	331	469	9005	41	95	75
Peru											
Lima-Callao/Chavez		12.00	. Z	77.12	W	43	260	6745	57	84	74
San Juan de Marcona		15.35	S 7:	75.15	W	197	306	929	N.A.	N.A.	N.A.
Talara		4.57	s 8	81.25	W	282	4	8973	09	88	7.5
Philippines											
Manila Airport	Luzon	14.52	N 12	121.00	E	75	0	11,449	69	93	80
Poland											
Krakow/Balice		50.08	Z	19.80	E	778	6924	2007	7	81	29
Puerto Rico											
San Juan/Isla Verde WSFO		18.43	9 N	00.99	W	10	0	11,406	69	06	78
Romania											
Bucuresti/Bancasa		44.50	N 2	26.13	E	308	5461	2948	8	88	70

_
rea
tin
con
ta (
Ē
E C
Ĕ
itional Climatic Data ($c\epsilon$
ona
aĦ
Internal
က
Ц С
ABLE D-3
⋖

Country City	Province or Region	Latitude		Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Dry-Bulb Wet-Bulb
								%9.66	1.0%	1.0%
Russia (Former Soviet Union)										
Kaliningrad	East Prussia	54.70 N	20.62	2 E	68	7115	1589	-3	77	64
Krasnoiarsk		56.00 N	92.88	3 E	636	11,278	1351	-29	80	63
Moscow Observatory		55.75 N	37.57	7 E	512	8596	1708	-10	42	65
Petropavlovsk		53.02 N	158.72	2 E	23	10,107	530	5	99	58
Rostov-Na-Donu		47.25 N	39.82	2 E	259	6360	3015	2	98	89
Vladivostok		43.12 N	131.90	0 E	453	8915	1728	8	75	29
Volgograd		48.68 N	44.35	2 E	476	7558	2840	9-	88	65
Saudi Arabia										
Dhahran		26.27 N	50.17	7 E	72	381	10,936	N.A.	N.A.	N.A.
Riyadh		24.70 N	46.73	3 E	2005	536	10,725	41	110	64
Senegal										
Dakar/Yoff		14.73 N	17.50	M (68	9	9750	61	88	77
Singapore										
Singapore/Changi		1.37 N	103.98	8 E	49	0	11,995	73	06	42
South Africa										
Cape Town/D F Malan		33.97 S	18.60) E	151	1685	4454	38	83	29
Johannesburg		26.13 S	28.23	3 E	5558	1919	4252	34	82	09
Pretoria		25.73 S	28.18	3 E	4364	1151	5828	39	88	63
Spain										
Barcelona		41.28 N	2.07	E	13	2638	3965	32	84	74
Madrid		40.47 N	3.57	W	1909	3669	3702	24	94	89
Valencia/Manises		39.50 N	0.47	×	203	1942	5045	34	88	72
Sweden										
Stockholm/Arlanda		S9.65 N	17.95	2 E	200	8123	1297	-2	77	61
Switzerland										
Zurich		47.38 N	8.57	Э	1867	6015	1995	13	80	92
Syria										
Damascus Airport		33.42 N	36.52	2 E	2001	2771	5293	25	86	64
Taiwan										
Alisan Shan		23.52 N	120.80	0 E	7894	4406	1958	N.A.	N.A.	N.A.
Chiayi (TW-AFB)		23.50 N	120.42	2 E	92	318	8926	48	91	81
Chiayyi		23.47 N	120.38	8 E	82	275	9288	47	92	82

TABLE D-3 International Climatic Data (continued)

Longitude 121.75 E 118.43 E 120.90 E 120.75 E 120.25 E 120.75 E 120.77 E 120.77 E 120.77 E 120.27 E 120.28 E 120.28 E 120.29 E 120.25 E 120.25 E 120.25 E 121.55 E		Elev., ft HDD65	5 CDD50	Temperature	Dry-Bulb Wet-Bulb	Wet-Bulb
ont.) 25.13 N 24.43 N 22.00 N Wu Lu Tien ingjo g Intl. Arpt. 22.03 N 24.02 N 24.02 N 24.02 N 24.02 N 24.02 N 22.03 N 24.07 N 22.03						
out.) 25.13 N 24.43 N 22.00 N Wu Lu Tien ingjo gl Intl. Arpt. 22.03 N 24.02 N 24.02 N 22.03 N 23.52 N 24.80 N 23.52 N 24.80 N 24.15 N 25.63 N 24.15 N 25.00 N 25.03 N				%9.66	1.0%	1.0%
25.13 N Wu Lu Tien ingjo Wu Lu Tien 22.00 N Wu Lu Tien 22.03 N 22.03 N 23.97 N 24.02 N 22.03 N 22.00 N						
24.43 N ingjo wu Lu Tien 22.00 N 22.03 N 22.03 N 24.62 N 24.62 N 24.62 N 24.62 N 24.62 N 24.62 N 24.67 N 24.67 N 24.80 N 24.80 N 24.16 N 24.16 N 24.16 N 24.17 N 24.18 N 24.18 N 24.18 N 25.03 N 25.0		10 472	8554	50	91	79
22.35 N mm/Wu Lu Tien 22.00 N singjo 22.03 N singjo 23.97 N mmg Intl. Arpt. 22.57 N mn mg mg mn mg		39 974	7420	N.A.	N.A.	N.A.
mm 22.00 N Singjo 24.82 N a 24.82 N a 24.02 N s 23.97 N amg Intl. Arpt. 22.57 N amg 22.70 N amg 22.70 N and 22.70 N and 24.80 N atung 24.18 N atung 24.18 N atung 24.18 N atung 22.57 N biang Kai Shek 25.03 N biang Kai Shek 25.03 N amgshan 25.07 N		30 24	10,355	N.A.	N.A.	N.A.
Singio Si		79 23	10,120	09	06	80
Singjo Singjo Singjo Singio	43 21	10,407	N.A.	N.A.	N.A.	
23.97 N ang Intl. Arpt. ang ang ang ang and and and ang and and		26 482	8567	48	91	82
24.02 N ang Intl. Arpt. ang ang Intl. Arpt. ang an ang an		62 220	8872	N.A.	N.A.	N.A.
23.88 N ang Infl. Arpt. 22.57 N an an an an an an and and and		49 221	9043	N.A.	N.A.	N.A.
amg Intl. Arpt. 22.57 N n n n 24.27 N n n 22.62 N n 22.73 N 22.73 N 22.70 N 24.80 N 24.80 N 24.15 N 24.15 N 25.63 N 25.63 N 25.63 N 25.63 N 26.17 N mgtung mgtu		3330 583	7136	N.A.	N.A.	N.A.
22.62 N un n 24.27 N n n land land land land land land la		26 111	9702	53	91	80
24.27 N an 22.78 N 22.03 N 23.57 N land and and and and and and and and and		95 70	9940	54	06	81
22.78 N land land land land land land land land		666 541	8306	N.A.	N.A.	N.A.
22.03 N land ngtung 22.70 N 22.70 N 22.70 N 22.50 N 22.50 N 22.61 N 24.80 N 24.15 N 24.15 N 24.15 N 22.95 N 22.00 N 22		33 158	9526	N.A.	N.A.	N.A.
23.57 N ngtung general and 26.17 N 22.70 N 23.52 N 24.80 N 24.80 N 24.18 N y/Shui Nan TW-AFB) 22.95 N 22.03 N hiang Kai Shek 25.03 N 25.03 N 25.03 N 25.03 N 25.03 N		1066 95	8765	57	84	80
land ngtung ngtung 1 22.70 N 22.70 N 23.52 N 25.63 N 24.80 N 23.10 N 3 3 3 34.15 N 24.15 N 24.18 N 24.18 N 24.18 N 25.05 N Miang Kai Shek 25.03 N 25.03 N mingshan 25.07 N 25.07 N		102 283	8957	52	68	82
22.70 N 1 23.52 N 25.63 N 24.80 N 25.67 N 8 8 9/Shui Nan 7W-AFB) 22.95 N 22.95 N 22.95 N 22.07 N 22.95 N 22.07 N 22.07 N 22.07 N 22.07 N 22.08 N 22.08 N 22.07 N		302 1948	5898	N.A.	N.A.	N.A.
23.52 N 25.63 N 24.80 N 24.80 N 25.10 N 25.11 N 25.11 N 25.12 N 25.13 N 25.14 S N 25.15 N 25.15 N 25.10 N 25.00 N 25.01 N 25.01 N 25.07 N 25.07 N		88 88	10,049	52	93	81
25.63 N and and an arrange are a series of the series of t		69 287	8906	N.A.	N.A.	N.A.
24.80 N ngtung 23.10 N 23.10 N 24.15 N 3 24.15 N 24.15 N 24.15 N 24.18 N 22.95 N 22.95 N 23.00 N 25.03 N hiang Kai Shek 25.03 N 25.07 N 25.07 N		335 531	8160	N.A.	N.A.	N.A.
23.10 N ngtung yShui Nan TW-AFB) 24.15 N 24.15 N 24.16 N 22.95 N 23.00 N 25.03 N hiang Kai Shek 25.03 N 25.07 N		108 534	8480	N.A.	N.A.	N.A.
22.67 N 3 24.15 N 24.18 N IW-AFB) 22.95 N 22.90 N 23.00 N 25.03 N biang Kai Shek 25.03 N 25.07 N		121 88	9601	N.A.	N.A.	N.A.
24.15 N y/Shui Nan 24.18 N TW-AFB) 22.95 N 23.00 N 25.03 N hiang Kai Shek 25.03 N 25.07 N		79 71	10,228	53	93	81
y/Shui Nan 24.18 N TW-AFB) 22.95 N 23.00 N 25.03 N hiang Kai Shek 25.08 N 25.07 N		256 312	8991	49	91	79
rW-AFB) 22.95 N 23.00 N 25.03 N hiang Kai Shek 25.08 N ungshan 25.07 N		364 381	8915	46	93	82
23.00 N biang Kai Shek 25.03 N ungshan 25.07 N		52 150	9729	50	91	82
25.03 N hiang Kai Shek 25.08 N 25.08 N 25.07 N 25.07 N		46 178	9577	51	91	81
hiang Kai Shek 25.08 N angshan 25.07 N		26 438	9688	48	93	80
25.07 N		75 594	8456	48	92	80
N 57 CC		20 506	8454	48	93	81
	22.75 N 121.15 E	33 74	9754	N.A.	N.A.	N.A.
Taitung/Fongyentsun 22.80 N 121.18 E		121 72	2926	N.A.	N.A.	N.A.
Taoyuan (AB) 25.07 N 121.23 E		164 626	8315	47	92	82

TABLE D-3 International Climatic Data (continued)

							Heating Design	Cooling Desig	Cooling Design Temperature
Country City	Province or Region	Latitude	Longitude	Elev., ft	HDD65	CDD50	Temperature	Dry-Bulb	Wet-Bulb
							%9.66	1.0%	1.0%
(Taiwan cont.)									
Tung Shih		23.27 N	119.67 E	148	191	9217	N.A.	N.A.	N.A.
Wu-Chi		24.25 N	120.52 E	16	405	8691	50	06	81
Yilan		24.77 N	121.75 E	23	411	8416	N.A.	N.A.	N.A.
Tanzania									
Dar es Salaam		S 88.9	39.20 E	180	4	10,755	N.A.	N.A.	N.A.
Thailand									
Bangkok		13.73 N	100.57 E	52	0	12,430	65	76	42
Tunisia									
Tunis/El Aouina		36.83 N	10.23 E	16	1657	2169	41		73
Turkey									
Adana		37.00 N	35.42 E	217	1847	8609	32	94	7.1
Ankara/Etimesgut		39.95 N	32.68 E	2644	5162	3077	2	98	63
Istanbul/Yesilkoy		40.97 N	28.82 E	121	3534	3777	26	84	69
United Kingdom									
Birmingham	England	52.45 N	1.73 W	325	2866	1355	21	75	62
Edinburgh	Scotland	55.95 N	3.35 W	135	6347	1001	21	69	09
Glasgow Apt	Scotland	55.87 N	4.43 W	23	6287	1041	21	71	61
London/Heathrow	England	51.48 N	0.45 W	79	5015	1894	25	78	64
Uruguay									
Montevideo/Carrasco		34.83 S	56.03 W	108	2124	4602	35	98	7.1
Venezuela									
Caracas/Maiquetia		$10.60\mathrm{N}$	W 86.99	236	6	11,501	70	91	83
Vietnam									
Hanoi/Gialam		21.02 N	$105.80 \; \mathrm{E}$	26	330	8986	N.A.	N.A.	N.A.
Saigon (Ho Chi Minh)		10.82 N	106.67 E	62	0	12,057	89	94	77

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX E INFORMATIVE REFERENCES

This appendix contains informative references for the convenience of users of Standard 90.1-2007 and to acknowledge source documents when appropriate. Some documents are also included in Section 12, "Normative References," because there are other citations of those documents within the standard that are normative.

Address/Contact Information

AABC

Associated Air Balance Council 1518 K Street Northwest, Suite 503 Washington, DC 20005 aabchg@aol.com

BLAST

Building Systems Laboratory University of Illinois 1206 West Green Street Urbana, IL 61801

www.bso.uiuc.edu/BLAST/index.html

CRRC

Cool Roof Rating Council 1738 Excelsior Avenue Oakland, CA 94602 (T) 866-465-2523 (T) 510-482-4420 (F) 510-482-4421 www.coolroofs.org

DOE-2

Building Energy Simulation news http://simulationresearch.lbl.gov/un.html

MICA

Midwest Insulation Contractors Association 16712 Elm Circle Omaha, NE 68130 www.micainsulation.org

NEBB

National Environmental Balancing Bureau 8575 Grovemont Circle Gaithersburg, MD 20877 www.nebb.org

SMACNA

Sheet Metal & Air Conditioning Contractors'
National Association
4201 Lafayette Center Drive
Chantilly, VA 20151
info@smacna.org
www.smacna.org

TMY2 Data

National Renewable Energy Laboratory NREL/RReDC Attn: Pamela Gray-Hann 1617 Cole Blvd., MS-1612 Golden, Colorado, USA 80401 http://rredc.nrel.gov/solar/old_data/nsrdb/tmy2/

WYEC2 Data

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Bookstore 1791 Tullie Circle, NE Atlanta, GA 30329-2305 (T) 404-636-8400 (F) 404-321-5478 www.ashrae.org/bookstore

IWEC Data

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Bookstore 1791 Tullie Circle, NE Atlanta, GA 30329-2305 (T) 404-636-8400 (F) 404-321-5478 www.ashrae.org/bookstore

Subsection No.	Reference	Title/Source
Exception to 5.5.3.1	CRRC-1-2002	Cool Roof Rating Council Product Rating Program
6.4.2	2001 ASHRAE Handbook—Fundamentals	ASHRAE
6.4.4.1.1	MICA Insulation Standards—1999	National Commercial and Industrial Insulation Standards
6.4.4.2.1	SMACNA Duct Construction Standards—1995	HVAC Duct Construction Standards, Metal and Flexible
6.4.4.2.2	SMACNA Duct Leakage Test Procedures—1985	HVAC Air Duct Leakage Test Manual
6.7.2.3.1	NEBB Procedural Standards—1999	Procedural Standards for Building Systems Commissioning
6.7.2.3.1	AABC 2002	Associated Air Balance Council Test and Balance Procedures
6.7.2.3.1	ASHRAE Standard 111-1988	Practices for Measurement, Testing, Adjusting and Balancing of Building Heating, Ventilation, Air-Conditioning and Refrigeration Systems
6.7.2.2	ASHRAE Guideline 4-1993	Preparation of Operating and Maintenance Documentation for Building Systems
6.7.2.4	ASHRAE Guideline 1-1996	The HVAC Commissioning Process
7.4.1 and 7.5	2003 ASHRAE Handbook—HVAC Applications	Chapter 49, Service Water Heating/ASHRAE
11.2.1	DOE-2	Support provided by Lawrence Berkeley National Laboratory at the referenced Web site
11.2.1	BLAST	University of Illinois
11.2.2	IWEC	International Weather for Energy Calculations
11.2.2	TMY 2 Data	Typical Meteorological Year

This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX F ADDENDA DESCRIPTION INFORMATION

ASHRAE/IESNA Standard 90.1-2007 incorporates ANSI/ASHRAE/IESNA Standard 90.1-2004 and Addenda a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, x, y, aa, ab, ac, ad, ae, af, ag, ah, ai, aj, ak, al, am, an, ap, aq, ar, and av to ANSI/ASHRAE/IESNA Standard 90.1-2004. Table F-1 lists each addendum and describes the way in which the text is affected by the change and states the ASHRAE and ANSI approval dates.

Addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004, Changes Identified **TABLE F-1**

Addenda to 90.1-2004	Section(s) Affected	Description of Changes ^a	ASHRAE Standards Committee Approval Date	ASHRAE Board of Directors Approval Date	IESNA ANSI Approval Date Approval Date	ANSI Approval Date
90.1a	Informative Appendix G	This addendum clarifies how windows should be distributed in the baseline simulation model and how uninsulated assemblies should be treated in the baseline simulation model, increases the size range for the use of packaged VAV systems in the baseline model, and provides more detail on how service hotwater systems should be modeled. Many of these changes may affect the ultimate performance rating of buildings using Appendix G. In addition, a reference was added to ASHRAE Standard 140 for the method of testing simulation programs.	1/21/06	1/26/06	1/18/06	4/10/06
90.1b	6. Heating, Ventilating, and Air Conditioning	Revises Table 6.8.1D and adds a definition for single-package vertical air-conditioner and single-package vertical heat pump.	6/25/05	9/08/9	8/3/05	8/3/05
90.1c	5. Building Envelope	This addendum revises the definition of <i>building entrance</i> to include vestibules and clarifies the requirements and exceptions for vestibules in Section 5.4.3.4.	6/25/05	9/08/9	8/3/05	8/3/05
90.1d	12. Normative References	This addendum updates the references applicable to the building envelope and deletes references that are not cited in the standard.	6/25/05	90/08/9	8/3/05	8/3/05
90.1e	9. Lighting	This addendum recognizes that track and busway type lighting systems can be limited by circuit breakers and permanently installed current limiters in Section 9.1.4.	6/25/05	90/08/9	8/3/05	8/3/05
90.1f	6. Heating, Ventilating, and Air Conditioning	This addendum modifies Tables 6.8.1A and 6.8.1B by raising the minimum efficiency for three-phase air-cooled central conditioners and heat pumps to be consistent with federal minimum standards.	1/21/06	1/26/06	1/18/06	4/10/06
90.1g	6. Heating, Ventilating, and Air Conditioning	This addendum amends the minimum efficiency levels of air-cooled air conditioners and heat pumps in Tables 6.8.1 A and 6.8.1B to be consistent with federal minimum standards.	1/21/06	1/26/06	1/18/06	4/10/06
90.1h	6. Heating, Ventilating, and Air Conditioning	This addendum revises the exceptions to Sections 6.4.3.1.2 and 6.4.3.6 by removing data processing centers from having specific exceptions on temperature and humidification dead bands.	1/21/06	1/26/06	1/18/06	4/10/06
90.1i	9. Lighting	This addendum adds language to Section 9.1.4(b) that allows additional flexibility in assigning wattage to luminaires with multi-level ballasts where other luminaire components would restrict lamp size.	1/21/06	1/26/06	1/18/06	4/10/06
90.1j	9. Lighting	This addendum to Section 9.4.1.3 allows additional flexibility in complying with the controls requirements by allowing additional combinations of commonly available control equipment.	1/21/06	1/26/06	1/18/06	4/10/06
90.1k	Informative Appendix A	This addendum revises Table A2.3 to add U-factors for screw-down roofs with R-19 insulation.	1/21/06	1/26/06	1/18/06	4/10/06
90.11	12. Normative References	This addendum updates the reference to ASHRAE Standard 140.	1/21/06	1/26/06	1/18/06	4/10/06

TABLE F-1 Addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004, Changes Identified (continued)

S. Building Envelope Normative Appendix D 9. Lighting 6. Heating, Ventilating, and Air Conditioning and 12. Normative References 7. Heating, Ventilating, and Air Conditioning and 12. Normative References 8. Heating, Ventilating, and Air Conditioning and 12. Normative References 9. Heating, Ventilating, and Air Conditioning and 12. Normative References and Informative Appendix G 9. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 12. Definitions and Informative Appendix G 13. Definitions and G. Heating, Ventilating, and Air Conditioning	This addendum revises the exception to Section 9.2.2.3 to provide an option for compliance that exempts the commonly used furniture mounted track lighting if it incompanies automatic shared.	Committee Approval Date	Approval Date	Арргоуаі Бас	Approval Date Approval Date
5. Building Envelope Normative Appendix D 9. Lighting 6. Heating, Ventilating, and Air Conditioning 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References 9. Leating, Ventilating, and Air Conditioning and 12. Normative References 12. Normative References 14. Conditioning 15. Normative Appendix G 6. Heating, Ventilating, and Air Conditioning 12. Normative Appendix G 7. Envelope, 12. Normative References, and Informative Appendix G 8. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 12. Definitions and G. Heating, Ventilating, and Air Conditioning	asca tannia moanica taex ngnung n n meo potates automate snaton.	1/21/06	1/26/06	1/18/06	4/10/06
9. Lighting 6. Heating, Ventilating, and Air Conditioning 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References Informative References Informative References and Informative References and Informative References and Informative References 3. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 9. Lighting 3. Definitions and 6. Heating, Ventilating, and Air Conditioning Air Conditioning	This addendum revises Section 5.5.4.4.1 to provide an exception to allow a user to take credit for overhangs towards compliance with the maximum SHGC requirements.	1/21/06	1/26/06	1/18/06	4/10/06
9. Lighting 6. Heating, Ventilating, and Air Conditioning 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References Informative Appendix G 6. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and 6. Heating, Ventilating, and Air Conditioning 6. Heating, Ventilating, and Air Conditioning	This addendum increases the amount of international climatic data in Appendix D.	1/21/06	1/26/06	1/18/06	4/10/06
6. Heating, Ventilating, and Air Conditioning 12. Normative References 6. Heating, Ventilating and Air Conditioning and 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References Informative Appendix G 6. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 12. Definitions and G 13. Definitions and Air Conditioning	This addendum modifies Exception (g) to Section 9.2.2.3 to allow for increased lighting for medicaland age-related issues in addition to visual impairment.	1/21/06	1/26/06	1/18/06	4/10/06
12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References Informative References and Informative References and Informative References and Informative References Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and 6. Heating, Ventilating, and Air Conditioning	This addendum removes Exception (a) to Section 6.4.3.2 for HVAC systems serving hotel/motel rooms and guest rooms.	1/21/06	1/26/06	1/18/06	4/10/06
6. Heating, Ventilating, and Air Conditioning and 12. Normative References 6. Heating, Ventilating, and Air Conditioning and 12. Normative References Informative Appendix G 6. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 7. Definitions and G. Heating, Ventilating, and Air Conditioning	This addendum updates the reference to ARI 340/260 from the 2000 edition to the 2004 edition.	1/21/06	1/26/06	1/18/06	4/10/06
6. Heating, Ventilating, and Air Conditioning and 12. Normative References Informative Appendix G 6. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and G. Heating, Ventilating, and Air Conditioning	This addendum updates language in the standard based on differences between Standard 62-1999 and 62.1-2004. The reference has also been updated.	1/21/06	1/26/06	1/18/06	4/10/06
Informative Appendix G 6. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and 6. Heating, Ventilating, and Air Conditioning	This addendum changes Table 6.8.1F to add an additional requirement of combustion efficiency to the current requirement of thermal efficiency for boilers, which will increase minimum efficiency. The reference in Section 12 has also been changed to reflect the change in the table.	1/21/06	1/26/06	1/18/06	4/10/06
6. Heating, Ventilating, and Air Conditioning 12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and G. Heating, Ventilating, and Air Conditioning	This addendum provides guidance for complying with the intent of the baseline building design for HVAC systems 5, 6, 7, and 8, which shall be modeled as floor-by-floor HVAC systems.	1/21/06	1/26/06	1/18/06	4/10/06
12. Normative References and Informative Appendix G 5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and G 6. Heating, Ventilating, and Air Conditioning	This addendum modifies the provisions of Section 6.4.3.8 to allow for demand control ventilation.	1/21/06	1/26/06	1/18/06	5/10/06
5. Envelope, 12. Normative References, and Informative Appendix G 9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and 6. Heating, Ventilating, and Air Conditioning	This addendum updates the normative references in Section 12 and Informative Appendix G for ATM-02 to ATM-04.	1/21/06	1/26/06	1/18/06	4/10/06
9. Lighting 11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and 6. Heating, Ventilating, and Air Conditioning	This addendum adds a reference and method of test for deriving SRI (ASTM Test Method E, 1980) for high albedo roofs. The changes in the standard were in both Section 5 and Informative Appendix G.	6/24/06	90/67/9	6/18/06	3/3/07
11. Energy Cost Budget Method and Informative Appendix G 3. Definitions and 6. Heating, Ventilating, and Air Conditioning	This addendum modifies Section 9.1 to clarify some lighting requirements.	6/24/06	6/29/06	6/18/06	3/3/07
3. Definitions and 6. Heating, Ventilating, and Air Conditioning	This addendum corrects the referenced section in Tables 11.3.1 and G3.1; Heating, Ventilating, and Air Conditioning to Sections 9.1.3, 9.1.4, and 9.2.	6/24/06	90/67/9	6/18/06	3/3/07
	This addendum modifies the fan power limitation requirements in Section 6.5.3.	1/27/07	3/2/07	1/18/07	3/27/07
90.1ad 5. Building Envelope reflectance and thermal	This addendum changes the exception to Section 5.5.3.1 to add a requirement that the values for solar reflectance and thermal emittance be determined by a laboratory accredited by a nationally recognized accreditation organization, such as the Cool Roof Rating Council.	2/2/05	2/10/05	2/3/05	3/14/05
90.1ae 9. Lighting Change to Section 9.2.1	Change to Section 9.2.1.1, "Space Control."	1/27/07	3/2/07	1/18/07	3/27/07

TABLE F-1 Addenda to ANSI/ASHRAE/IESNA Standard 90.1-2004, Changes Identified (continued)

Addenda to 90.1-2004	Sections Affected	Description of Changes*	ASHRAE Standards Committee Approval Date	ASHRAE Board of Directors Approval Date	IESNA ANSI Approval Date Approval Date	ANSI Approval Date
90.1ag	Informative Appendix G	This addendum clarifies that only HVAC fans that provide outdoor air for ventilation need to be modeled as running continuously.	6/24/06	90/52/06	6/18/06	3/3/07
90.1ah	11. Energy Cost Budget Method	This addendum modifies the requirements in Table 11.3.1 for condenser heat recovery.	6/24/06	90/52/9	6/18/06	3/3/07
90.1ai	9. Lighting	This addendum modifies the interior lighting power requirements for retail display lighting in Section 9.6.2.	1/27/07	3/2/07	1/18/07	3/27/07
90.1 aj	5. Building Envelope	This addendum modifies the exception to Section 5.5.3.1 by adding the ASTM Test Method E 1980—Standard Practice for Calculating Solar Reflectance Index (SRI) of Horizontal and Low Sloped Opaque Surfaces.	6/24/06	6/29/06	6/18/06	3/3/07
90.1ak	Table 6.2.1G, Performance Requirements for Heat Rejection Equipment, and Section 6.2.1	This addendum changes Table 6.8.1G to add requirements for cooling towers to be tested to CTI test procedures and to update the corresponding references in Section 6.2.1.	6/24/06	90/52/06	90/81/9	3/3/07
90.1al	Normative Appendix A	This addendum corrects the terminology used in Section A2.3 for metal building roofs.	6/24/06	6/29/06	6/18/06	3/3/07
90.1am	11. Energy Cost Budget Method and Informative Appendix G	This addendum modifies the VAV turndown requirements in Section 11 and Informative Appendix G in accordance to the requirements in Section 6.5.2.1.	6/24/06	6/29/06	6/18/06	3/3/07
90.1an	6. Heating, Ventilating, and Air Conditioning	This addendum modifies the equipment efficiency requirements for commercial boilers in Table 6.8.1F.	1/27/07	3/2/07	1/18/07	3/27/07
90.1ao	6. Heating, Ventilating, and Air Conditioning	This addendum adds a footnote for increasing unit heater efficiency requirements (requiring intermittent ignition devices, power venting, or flue dampers) to comply with federal law.	1/27/07	3/2/07	1/18/07	3/27/07
90.1ap	9. Lighting	This addendum clarifies the intent of a "sales area" space in Table 9.6.1.	1/27/07	3/2/07	1/18/07	3/3/07
90.1aq	12. Normative References	This addendum updates the references to CTI documents.	1/27/07	3/2/07	1/18/07	3/3/07
90.1ar	6. Mechanical	This addendum lowers the part-load fan power limitation from 15 HP to 10 HP in Section 6.5.3.2.1.	1/27/07	3/2/07	1/18/07	3/3/07
90.1as	5. Building Envelope	This addendum modifies the opaque assembly requirements in Tables 5.5-1 through 5.5-8.	5/18/07	6/4/07	6/4/07	12/18/07
90.1at	5. Building Envelope	This addendum modifies the fenestration requirements in Tables 5.5-1 through 5.5-8.	5/18/07	6/4/07	6/4/07	12/18/07
90.1av	5. Building Envelope	This addendum adds an exception to Section 5.5.4.4.1 to allow credit for overhangs toward compliance with the maximum SHGC requirements.	1/27/07	3/2/07	1/18/07	3/3/07

 $^{^{\}rm a}$ These descriptions may not be complete and are provided for information only.

NOTE

When addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at http://www.ashrae.org.

(This appendix is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE APPENDIX G PERFORMANCE RATING METHOD

G1. GENERAL

G1.1 Performance Rating Method Scope. This building performance rating method is a modification of the Energy Cost Budget (ECB) Method in Section 11 and is intended for use in rating the energy *efficiency* of building designs that exceed the requirements of this standard. This appendix does NOT offer an alternative compliance path for minimum standard compliance; that is the intent of Section 11, Energy Cost Budget Method. Rather, this appendix is provided for those wishing to use the methodology developed for this standard to quantify performance that substantially exceeds the requirements of Standard 90.1. It may be useful for evaluating the performance of all *proposed designs*, including *alterations* and *additions* to *existing buildings*, except designs with no mechanical systems.

G1.2 Performance Rating. This performance rating method requires conformance with the following provisions:

All requirements of Sections 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4 are met. These sections contain the mandatory provisions of the standard and are prerequisites for this rating method. The improved performance of the proposed building design is calculated in accordance with provisions of this appendix using the following formula:

Percentage improvement = 100 × (Baseline building performance

- Proposed building performance) / Baseline building performance

Notes:

- 1. Both the *proposed building performance* and the *base-line building performance* shall include all end-use load components, such as receptacle and process loads.
- 2. Neither the *proposed building performance* nor the *baseline building performance* are predictions of actual energy consumption or costs for the *proposed design* after construction. Actual experience will differ from these calculations due to variations such as occupancy, building operation and maintenance, weather, energy use not covered by this procedure, changes in energy rates between design of the building and occupancy, and the precision of the calculation tool.
- **G1.3 Trade-Off Limits.** When the proposed modifications apply to less than the whole building, only parameters related to the systems to be modified shall be allowed to vary. Parameters relating to unmodified existing conditions or to future building components shall be identical for determining both

the baseline building performance and the proposed building performance. Future building components shall meet the prescriptive requirements of Sections 5.5, 6.5, 7.5, 9.5, and 9.6.

- **G1.4 Documentation Requirements.** Simulated performance shall be documented, and documentation shall be submitted to the *rating authority*. The information submitted shall include the following:
- a. Calculated values for the *baseline building performance*, the *proposed building performance*, and the percentage improvement.
- A list of the energy-related features that are included in the design and on which the performance rating is based.
 This list shall document all energy features that differ between the models used in the *baseline building performance* and *proposed building performance* calculations.
- c. Input and output report(s) from the *simulation program* or compliance software including a breakdown of energy usage by at least the following components: lights, internal equipment loads, service water heating equipment, space heating equipment, space cooling and heat rejection equipment, fans, and other HVAC equipment (such as pumps). The output reports shall also show the amount of time any loads are not met by the HVAC system for both the *proposed design* and *baseline building design*.
- d. An explanation of any error messages noted in the *simulation program* output.

G2. SIMULATION GENERAL REQUIREMENTS

- **G2.1 Performance Calculations.** The *proposed building performance* and *baseline building performance* shall be calculated using the following:
- a. the same simulation program
- b. the same weather data
- c. the same energy rates
- **G2.2 Simulation Program.** The *simulation program* shall be a computer-based program for the analysis of energy consumption in buildings (a program such as, but not limited to, DOE-2, BLAST, or EnergyPlus). The *simulation program* shall include calculation methodologies for the building components being modeled. For components that cannot be modeled by the simulation program, the exceptional calculation methods requirements in Section G2.5 may be used.
- **G2.2.1** The *simulation program* shall be approved by the *rating authority* and shall, at a minimum, have the ability to explicitly model all of the following:
- a. 8760 hours per year
- hourly variations in occupancy, lighting power, miscellaneous equipment power, thermostat setpoints, and HVAC system operation, defined separately for each day of the week and holidays
- c. thermal mass effects
- d. ten or more thermal zones
- e. part-load performance curves for mechanical equipment

- f. capacity and *efficiency* correction curves for mechanical heating and cooling equipment
- g. air-side economizers with integrated control
- baseline building design characteristics specified in Section G3
- **G2.2.2** The *simulation program* shall have the ability to either (1) directly determine the *proposed building performance* and *baseline building performance* or (2) produce hourly reports of energy use by an energy source suitable for determining the *proposed building performance* and *baseline building performance* using a separate calculation engine.
- **G2.2.3** The *simulation program* shall be capable of performing design load calculations to determine required HVAC equipment capacities and air and water flow rates in accordance with generally accepted engineering standards and handbooks (for example, *ASHRAE Handbook—Fundamentals*) for both the *proposed design* and *baseline building design*.
- **G2.2.4** The simulation program shall be tested according to ASHRAE Standard 140, and the results shall be furnished by the software provider.
- **G2.3 Climatic Data.** The *simulation program* shall perform the simulation using hourly values of climatic data, such as temperature and humidity from representative climatic data, for the site in which the *proposed design* is to be located. For cities or urban regions with several climatic data entries, and for locations where weather data are not available, the designer shall select available weather data that best represent the climate at the construction site. The selected weather data shall be approved by the *rating authority*.
- **G2.4** Energy Rates. Annual energy costs shall be determined using either actual rates for purchased energy or state average energy prices published by DOE's Energy Information Administration (EIA) for commercial building customers, but rates from different sources may not be mixed in the same project.

Note: The above provision allows users to gain credit for features that yield load management benefits. Where such features are not present, users can simply use state average unit prices from EIA, which are updated annually and readily available on EIA's Web site (www.eia.doe.gov).

Exception: On-site renewable energy sources or site-recovered energy shall not be considered to be purchased energy and shall not be included in the *proposed building performance*. Where on-site renewable or site-recovered sources are used, the *baseline building performance* shall be based on the energy source used as the backup energy source or on the use of electricity if no backup energy source has been specified.

G2.5 Exceptional Calculation Methods. Where no simulation program is available that adequately models a design, material, or device, the *rating authority* may approve an exceptional calculation method to demonstrate above-standard performance using this method. Applications for approval of an exceptional method shall include documenta-

tion of the calculations performed and theoretical and/or empirical information supporting the accuracy of the method.

G3. CALCULATION OF THE PROPOSED AND BASELINE BUILDING PERFORMANCE

G3.1 Building Performance Calculations. The simulation model for calculating the proposed and *baseline building performance* shall be developed in accordance with the requirements in Table G3.1.

G3.1.1 Baseline HVAC System Type and Description. HVAC systems in the *baseline building design* shall be based on usage, number of floors, conditioned floor area, and heating source as specified in Table G3.1.1A and shall conform with the system descriptions in Table G3.1.1B. For systems 1, 2, 3, and 4, each thermal block shall be modeled with its own HVAC system. For systems 5, 6, 7, and 8, each floor shall be modeled with a separate HVAC system. Floors with identical thermal blocks can be grouped for modeling purposes.

Exceptions:

- a. Use additional system type(s) for nonpredominant conditions (i.e., residential/nonresidential or heating source) if those conditions apply to more than 20,000 ft² of conditioned floor area.
- b. If the baseline HVAC system type is 5, 6, 7, or 8, use separate single-zone systems conforming with the requirements of System 3 or System 4 (depending on building heating source) for any spaces that have occupancy or process loads or schedules that differ significantly from the rest of the building. Peak thermal loads that differ by 10 Btu/h·ft² or more from the average of other spaces served by the system or schedules that differ by more than 40 equivalent full-load hours per week from other spaces served by the system are considered to differ significantly. Examples where this exception may be applicable include, but are not limited to, computer server rooms, natatoriums, and continually occupied security areas.
- c. If the baseline HVAC system type is 5, 6, 7, or 8, use separate single-zone systems conforming with the requirements of System 3 or System 4 (depending on building heat source) for any zones having special pressurization relationships, cross-contamination requirements, or code-required minimum circulation rates.
- d. For laboratory spaces with a minimum of 5000 cfm of exhaust, use system type 5 or 7 that reduce the exhaust and makeup air volume to 50% of design values during unoccupied periods. For all-electric buildings, the heating shall be electric resistance.
- **G3.1.1.1 Purchased Heat.** For systems using purchased hot water or steam, hot water or steam costs shall be based on actual utility rates, and on-site boilers shall not be modeled in the *baseline building design*.
- **G3.1.2 General** *Baseline* **HVAC System Requirements.** HVAC systems in the *baseline building design* shall conform with the general provisions in this section.

TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance

N	o. Proposed Building Performance	Baseline Building Performance
1. De	sign Model	
b.	The simulation model of the <i>proposed design</i> shall be consistent with the design documents, including proper accounting of fenestration and opaque envelope types and areas; interior lighting power and controls; HVAC system types, sizes, and controls; and service water heating systems and controls. All end-use load components within and associated with the building shall be modeled, including, but not limited to, exhaust fans, parking garage ventilation fans, snow-melt and freeze-protection equipment, facade lighting, swimming pool heaters and pumps, elevators and escalators, refrigeration, and cooking. Where the simulation program does not specifically model the functionality of the installed system, spreadsheets or other documentation of the assumptions shall be used to generate the power demand and operating schedule of the systems. All conditioned spaces in the <i>proposed design</i> shall be simulated as being both heated and cooled even if no heating or cooling system is to be installed, and temperature	The baseline building design shall be modeled with the same number of floors and identical conditioned floor area as the proposed design.
c.	and humidity control setpoints and schedules shall be the same for <i>proposed</i> and <i>baseline building designs</i> . When the <i>performance rating method</i> is applied to buildings in which energy-related features have not yet been designed (e.g., a lighting system), those yet-to-be-designed features shall be described in the <i>proposed design</i> exactly as they are defined in the <i>baseline building design</i> . Where the space classification for a space is not known, the space shall be categorized as an office space.	
2. A	dditions and Alterations	
the exa. b. c.	coceptable to predict performance using building models that exclude parts of isting building provided that all of the following conditions are met: Work to be performed in excluded parts of the building shall meet the requirements of Sections 5 through 10. Excluded parts of the building are served by HVAC systems that are entirely separate from those serving parts of the building that are included in the building model. Design space temperature and HVAC system operating setpoints and schedules on either side of the boundary between included and excluded parts of the building are essentially the same. If a declining block or similar utility rate is being used in the analysis and the excluded and included parts of the building are on the same utility meter, the rate shall reflect the utility block or rate for the building plus the addition.	Same as Proposed Design
3. S _l	pace Use Classification	
in acc fication the tw building	e shall be specified using the building type or space type lighting classifications ordance with Section 9.5.1 or 9.6.1. The user shall specify the space use classions using either the building type or space type categories but shall not combine to types of categories. More than one building type category may be used in a ng if it is a mixed-use facility. If space type categories are used, the user may ify the placement of the various space types within the building model, prothat building-total areas for each space type are accurate.	Same as Proposed Design
4. Se	chedules	
be use by the	ules capable of modeling hourly variations in occupancy, lighting power, miseous equipment power, thermostat setpoints, and HVAC system operation shalled. The schedules shall be typical of the proposed building type as determined edesigner and approved by the <i>rating authority</i> . C Fan Schedules. Schedules for HVAC fans that provide outdoor air for ventishall run continuously whenever spaces are occupied and shall be cycled on fit to meet heating and cooling loads during unoccupied hours. Exceptions: a. Where no heating and/or cooling system is to be installed and a heating or cooling system is being simulated only to meet the requirements described	Same as Proposed Design Exception: Schedules may be allowed to differ between proposed design and baseline building design when necessary to model nonstandard efficiency measures, provided that the revised schedules have the approval of the rating authority. Measures that may warrant use of different schedules include, but are not limited to, lighting controls, natural ventilation, demand control ventilation, and measures that reduce service water heating loads.
	 in this table, heating and/or cooling system fans shall not be simulated as running continuously during occupied hours but shall be cycled on and off to meet heating and cooling loads during all hours. b. HVAC fans shall remain on during occupied and unoccupied hours in spaces that have health and safety mandated minimum ventilation requirements during unoccupied hours. 	

TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance (continued)

No. Proposed Building Performance

Baseline Building Performance

5. Building Envelope

All components of the *building envelope* in the *proposed design* shall be modeled as shown on architectural drawings or as built for existing building envelopes.

Exceptions: The following building elements are permitted to differ from architectural drawings.

- a. All uninsulated assemblies (e.g., projecting balconies, perimeter edges of intermediate floor stabs, concrete floor beams over parking garages, roof parapet) shall be separately modeled using either of the following techniques:
 - Separate model of each of these assemblies within the energy simulation model.
 - 2. Separate calculation of the U-factor for each of these assemblies. The U-factors of these assemblies are then averaged with larger adjacent surfaces using an area-weighted average method. This average U-factor is modeled within the energy simulation model.
 - Any other envelope assembly that covers less than 5% of the total area of that assembly type (e.g., exterior walls) need not be separately described provided that it is similar to an assembly being modeled. If not separately described, the area of an envelope assembly shall be added to the area of an assembly of that same type with the same orientation and thermal properties.
- b. Exterior surfaces whose azimuth orientation and tilt differ by less than 45 degrees and are otherwise the same may be described as either a single surface or by using multipliers.
- c. For exterior roofs, the roof surface may be modeled with a reflectance of 0.45 if the reflectance of the *proposed design* roof is greater than 0.70 and its emittance is greater than 0.75 or has a minimum SRI of 82. Reflectance values shall be based on testing in accordance with ASTM C1549, ASTM E903, or ASTM E1918, and emittance values shall be based on testing in accordance with ASTM C1371 or ASTM E408, and SRI shall be based on ASTM E1980 calculated at medium wind speed. All other roof surfaces shall be modeled with a reflectance of 0.30.
- d. Manual fenestration shading devices such as blinds or shades shall not be modeled. Automatically controlled fenestration shades or blinds may be modeled. Permanent shading devices such as fins, overhangs, and light shelves may be modeled.

Equivalent dimensions shall be assumed for each exterior envelope component type as in the *proposed design*; i.e., the total gross area of exterior walls shall be the same in the *proposed* and *baseline building designs*. The same shall be true for the areas of roofs, floors, and doors, and the exposed perimeters of concrete slabs on grade shall also be the same in the *proposed* and *baseline building designs*. The following additional requirements shall apply to the modeling of the *baseline building design*:

- a. Orientation. The baseline building performance shall be generated by simulating the building with its actual orientation and again after rotating the entire building 90, 180, and 270 degrees, then averaging the results. The building shall be modeled so that it does not shade itself.
- Opaque Assemblies. Opaque assemblies used for new buildings or additions shall conform with the following common, lightweight assembly types and shall match the appropriate assembly maximum U-factors in Tables 5.5-1 through 5.5-8:
- · Roofs—Insulation entirely above deck
- Above-grade walls—Steel-framed
- Floors—Steel-joist
- Opaque door types shall match the proposed design and conform to the U-factor requirements from the same tables.
- Slab-on-grade floors shall match the F-factor for unheated slabs from the same tables.
 Opaque assemblies used for alterations shall conform with Section 5.1.3.
- c. Vertical Fenestration. Vertical fenestration areas for new buildings and additions shall equal that in the proposed design or 40% of gross abovegrade wall area, whichever is smaller, and shall be distributed on each face of the building in the same proportions in the proposed design. Fenestration U-factors shall match the appropriate requirements in Tables 5.5-1 through 5.5-8. Fenestration SHGC shall match the appropriate requirements in Tables 5.5-1 through 5.5-8. All vertical glazing shall be assumed to be flush with the exterior wall, and no shading projections shall be modeled. Manual window shading devices such as blinds or shades shall not be modeled. The fenestration areas for envelope alterations shall reflect the limitations on area, U-factor, and SHGC as described in Section 5.1.3.
- d. Skylights and Glazed Smoke Vents. Skylight area shall be equal to that in the proposed building design or 5% of the gross roof area that is part of the building envelope, whichever is smaller. If the skylight area of the proposed building design is greater than 5% of the gross roof area, baseline skylight area shall be decreased by an identical percentage in all roof components in which skylights are located to reach the 5% skylight-to-roof ratio. Skylight orientation and tilt shall be the same as in the proposed building design. Skylight U-factor and SHGC properties shall match the appropriate requirements in Tables 5.5-1 through 5.5-8.
- e. **Roof albedo.** All roof surfaces shall be modeled with a reflectivity of 0.30.
- f. Existing Buildings. For existing building envelopes, the baseline building design shall reflect existing conditions prior to any revisions that are part of the scope of work being evaluated.

TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance (continued)

No.	Proposed Building Performance	Baseline Building Performance
6. L	ighting	
a. b. c. d.	ting power in the proposed design shall be determined as follows: Where a complete lighting system exists, the actual lighting power for each thermal block shall be used in the model. Where a lighting system has been designed, lighting power shall be determined in accordance with Sections 9.1.3 and 9.1.4. Where lighting neither exists nor is specified, lighting power shall be determined in accordance with the Building Area Method for the appropriate building type. Lighting system power shall include all lighting system components shown or provided for on the plans (including lamps and ballasts and task and furniture-mounted fixtures). Exception: For multifamily dwelling units, hotel/motel guest rooms, and other spaces in which lighting systems are connected via receptacles and are not shown or provided for on building plans, assume identical lighting power for the proposed and baseline building designs in the simulations. Lighting power for parking garages and building facades shall be modeled. Credit may be taken for the use of automatic controls for daylight utilization but only if their operation is either modeled directly in the building simulation or modeled in the building simulation through schedule adjustments determined by a separate daylighting analysis approved by the rating authority. For automatic lighting controls in addition to those required for minimum code compliance under Section 9.4.1, credit may be taken for automatically controlled systems by reducing the connected lighting power by the applicable percentages listed in Table G3.2. Alternatively, credit may be taken for these devices by modifying the lighting schedules used for the proposed design, provided that credible	Lighting power in the baseline building design shall be determined using the same categorization procedure (building area or space function) and categories as the proposed design with lighting power set equal to the maximum allowed for the corresponding method and category in Section 9.2. No automatic lighting controls (e.g., programmable controls or automatic controls for daylight utilization) shall be modeled in the baseline building design, as the lighting schedules used are understood to reflect the mandatory control requirements in this standard.
	technical documentation for the modifications are provided to the <i>rating authority</i> . Chermal Blocks—HVAC Zones Designed	
	re HVAC zones are defined on HVAC design drawings, each HVAC zone shall odeled as a separate <i>thermal block</i> . Exception: Different HVAC zones may be combined to create a single <i>thermal block</i> or identical <i>thermal blocks</i> to which multipliers are applied, provided that all of the following conditions are met: a. The space use classification is the same throughout the <i>thermal block</i> . b. All HVAC zones in the <i>thermal block</i> that are adjacent to glazed exterior walls face the same orientation or their orientations vary by less than 45 degrees. c. All of the zones are served by the same HVAC system or by the same kind of HVAC system.	Same as Proposed Design.
8. T	Thermal Blocks—HVAC Zones Not Designed	
be de	re the HVAC zones and systems have not yet been designed, thermal blocks shall efined based on similar internal load densities, occupancy, lighting, thermal and the temperature schedules, and in combination with the following guidelines: Separate thermal blocks shall be assumed for interior and perimeter spaces. Interior spaces shall be those located greater than 15 ft from an exterior wall. Perimeter spaces shall be those located within 15 ft of an exterior wall. Separate thermal blocks shall be assumed for spaces adjacent to glazed exterior walls; a separate zone shall be provided for each orientation, except that orientations that differ by less than 45 degrees may be considered to be the same orientation. Each zone shall include all floor area that is 15 ft or less from a glazed perimeter wall, except that floor area within 15 ft of glazed perimeter walls having more than one orientation shall be divided proportionately between zones. Separate thermal blocks shall be assumed for spaces having floors that are in contact with the ground or exposed to ambient conditions from zones that do not share these features. Separate thermal blocks shall be assumed for spaces having exterior ceiling or roof assemblies from zones that do not share these features.	Same as Proposed Design.
9. T	hermal Blocks—Multifamily Residential Buildings	
Residunit,	dential spaces shall be modeled using at least one <i>thermal block</i> per <i>dwelling</i> except that those units facing the same orientations may be combined into one <i>nal block</i> . Corner units and units with roof or floor loads shall only be combined units sharing these features.	Same as Proposed Design.

TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance (continued)

No.	Proposed Building Performance	Baseline Building Performance
10.	HVAC Systems	
	HVAC system type and all related performance parameters in the <i>proposed</i> gn, such as equipment capacities and efficiencies, shall be determined as follows: Where a complete HVAC system exists, the model shall reflect the actual system type using actual component capacities and efficiencies. Where an HVAC system has been designed, the HVAC model shall be consistent with design documents. Mechanical equipment efficiencies shall be adjusted from actual design conditions to the standard rating conditions specified in Section 6.4.1 if required by the simulation model. Where no heating system exists or no heating system has been specified, the heating system classification shall be assumed to be electric, and the system characteristics shall be identical to the system modeled in the <i>baseline building design</i> . Where no cooling system exists or no cooling system has been specified, the cooling system shall be identical to the system modeled in the <i>baseline building building</i> gystem system shall be identical to the system modeled in the <i>baseline building</i>	The HVAC system(s) in the baseline building design shall be of the type and description specified in Section G3.1.1, shall meet the general HVAC system requirements specified in Section G3.1.2, and shall meet any system-specific requirements in Section G3.1.3 that are applicable to the baseline HVAC system type(s).
11.	design. Service Hot-Water Systems	
	service hot-water system type and all related performance parameters, such as pment capacities and efficiencies, in the <i>proposed design</i> shall be determined as ws: Where a complete service hot-water system exists, the <i>proposed design</i> shall reflect the actual system type using actual component capacities and efficiencies. Where a service hot-water system has been specified, the service hot-water model shall be consistent with design documents. Where no service hot-water loads, a service hot-water system shall be modeled that matches the system in the <i>baseline building design</i> and serves the same hot-water loads. For buildings that will have no service hot-water loads, no service hot-water system shall be modeled.	design shall reflect the actual system type using the actual component capacities and efficiencies.b. Where a new service hot-water system has been specified, the system shall

TABLE G3.1 Modeling Requirements for Calculating Proposed and Baseline Building Performance (continued)

No. Proposed Buildin	g Performance	Baseline Building Performance
		3. Service hot-water usuage can be demonstrated to be reduced by reducing the hot fraction of mixed water to achieve required operational tempera- ture. Examples include shower or laundry heat recovery to incoming cold-water supply, reducing the hot-water fraction required to meet required mixed-water temperature. Such reduction shall be demonstrated by calculations.
12. Receptacle and Other Lo	pads	
estimated based on the building be identical in the <i>proposed</i> and authorized by the <i>rating author</i>	such as those for office and other equipment, shall be g type or space type category and shall be assumed to d baseline building designs, except as specifically sity. These loads shall be included in simulations of the when calculating the baseline building performance ance.	Other systems, such as motors covered by Section 10, and miscellaneous loads shall be modeled as identical to those in the <i>proposed design</i> including schedules of operation and control of the equipment. Where there are specific <i>efficiency</i> requirements in Section 10, these systems or components shall be modeled as having the lowest <i>efficiency</i> allowed by those requirements. Where no efficiency requirements exist, power and energy rating or capacity of the equipment shall be identical between the <i>baseline building</i> and the <i>proposed design</i> with the following exception: variations of the power requirements, schedules, or control sequences of the equipment modeled in the <i>baseline building</i> from those in the <i>proposed design</i> may be allowed by the <i>rating authority</i> based upon documentation that the equipment installed in the <i>proposed design</i> represents a significant verifiable departure from documented conventional practice. The burden of this documentation is to demonstrate that accepted conventional practice would result in <i>baseline building</i> equipment different from that installed in the <i>proposed design</i> . Occupancy and occupancy schedules may not be changed.
13. Modeling Limitations to	the Simulation Program	
posed design explicitly, substitu	ot model a component or system included in the <i>pro</i> ute a thermodynamically similar component model ted performance of the component that cannot be	Same as Proposed Design.

TABLE G3.1.1A Baseline HVAC System Types

Building Type	Fossil Fuel, Fossil/Electric Hybrid, and Purchased Heat	Electric and Other
Residential	System 1—PTAC	System 2—PTHP
Nonresidential and 3 Floors or Less and <25,000 ft ²	System 3—PSZ-AC	System 4—PSZ-HP
Nonresidential and 4 or 5 Floors and <25,000 ft ² or 5 Floors or Less and 25,000 ft ² to 150,000 ft ²	System 5—Packaged VAV with Reheat	System 6—Packaged VAV with PFP Boxes
Nonresidential and More than 5 Floors or >150,000 ft ²	System 7—VAV with Reheat	System 8—VAV with PFP Boxes

Residential building types include dormitory, hotel, motel, and multifamily. Residential space types include guest rooms, living quarters, private living space, and sleeping quarters. Other building and space types are considered nonresidential.

Where no heating system is to be provided or no heating energy source is specified, use the "Electric and Other" heating source classification.

Where attributes make a building eligible for more than one baseline system type, use the predominant condition to determine the system type for the entire building. For laboratory spaces with a minimum of 5000 cfm of exhaust, use system type 5 or 7 and reduce the exhaust and makeup air volume to 50% of design values during unoccupied periods. For all-electric buildings, the heating shall be electric resistance.

Baseline System Descriptions TABLE G3.1.1B

System No.	System Type	Fan Control	Cooling Type	Heating Type
1. PTAC	Packaged terminal air conditioner	Constant volume	Direct expansion	Hot-water fossil fuel boiler
2. PTHP	Packaged terminal heat pump	Constant volume	Direct expansion	Electric heat pump
3. PSZ-AC	Packaged rooftop air conditioner	Constant volume	Direct expansion	Fossil fuel furnace
4. PSZ-HP	Packaged rooftop heat pump	Constant volume	Direct expansion	Electric heat pump
5. Packaged VAV with Reheat	Packaged rooftop VAV with reheat	VAV	Direct expansion	Hot-water fossil fuel boiler
6. Packaged VAV with PFP Boxes	Packaged rooftop VAV with reheat	VAV	Direct expansion	Electric resistance
7. VAV with Reheat	Packaged rooftop VAV with reheat	VAV	Chilled water	Hot-water fossil fuel boiler
8. VAV with PFP Boxes	VAV with reheat	VAV	Chilled water	Electric resistance

G3.1.2.1 Equipment Efficiencies. All HVAC equipment in the *baseline building design* shall be modeled at the minimum *efficiency* levels, both part load and full load, in accordance with Section 6.4. Where *efficiency* ratings, such as EER and COP, include fan energy, the descriptor shall be broken down into its components so that supply fan energy can be modeled separately.

G3.1.2.2 Equipment Capacities. The equipment capacities for the baseline building design shall be based on sizing runs for each orientation (per Table G3.1, No. 5a) and shall be oversized by 15% for cooling and 25% for heating, i.e., the ratio between the capacities used in the annual simulations and the capacities determined by the sizing runs shall be 1.15 for cooling and 1.25 for heating. Unmet load hours for the proposed design or baseline building designs shall not exceed 300 (of the 8760 hours simulated), and unmet load hours for the proposed design shall not exceed the number of unmet load hours for the baseline building design by more than 50. If unmet load hours in the proposed design exceed the unmet load hours in the baseline building by more than 50, simulated capacities in the baseline building shall be decreased incrementally and the building resimulated until the unmet load hours are within 50 of the unmet load hours of the proposed design. If unmet load hours for the proposed design or baseline building design exceed 300, simulated capacities shall be increased incrementally, and the building with unmet loads resimulated until unmet load hours are reduced to 300 or less. Alternatively, unmet load hours exceeding these limits may be accepted at the discretion of the rating authority provided that sufficient justification is given indicating that the accuracy of the simulation is not significantly compromised by these unmet loads.

G3.1.2.2.1 Sizing Runs. Weather conditions used in sizing runs to determine *baseline* equipment capacities may be based either on hourly historical weather files containing typical peak conditions or on design days developed using 99.6% heating design temperatures and 1% dry-bulb and 1% wetbulb cooling design temperatures.

G3.1.2.3 Preheat Coils. If the HVAC system in the *proposed design* has a preheat coil and a preheat coil can be modeled in the *baseline* system, the *baseline* system shall be modeled with a preheat coil controlled in the same manner as the *proposed design*.

G3.1.2.4 Fan System Operation. Supply and return fans shall operate continuously whenever spaces are occupied and shall be cycled to meet heating and cooling loads during unoccupied hours. If the supply fan is modeled as cycling and fan energy is included in the energy-efficiency rating of the equipment, fan energy shall not be modeled explicitly. Supply, return, and/or exhaust fans will remain on during occupied and unoccupied hours in spaces that have health and safety mandated minimum ventilation requirements during unoccupied hours.

G3.1.2.5 Ventilation. Minimum *outdoor air* ventilation rates shall be the same for the *proposed* and *baseline building designs*.

Exception: When modeling demand-control ventilation in the *proposed design* when its use is not required by Section 6.4.3.8.

G3.1.2.6 Economizers. Outdoor air economizers shall not be included in *baseline* HVAC Systems 1 and 2. *Outdoor air* economizers shall be included in *baseline* HVAC Systems 3 through 8 based on climate as specified in Table G3.1.2.6A.

Exceptions: Economizers shall not be included for systems meeting one or more of the exceptions listed below.

- a. Systems that include gas-phase air cleaning to meet the requirements of Section 6.1.2 in Standard 62.1.
 This exception shall be used only if the system in the proposed design does not match the building design.
- b. Where the use of *outdoor air* for cooling will affect supermarket open refrigerated casework systems. This exception shall only be used if the system in the *proposed design* does not use an economizer. If the exception is used, an economizer shall not be included in the *baseline building design*.

G3.1.2.7 Economizer High-Limit Shutoff. The high-limit shutoff shall be a dry-bulb switch with setpoint temperatures in accordance with the values in Table G3.1.2.6B.

G3.1.2.8 Design Airflow Rates. System design supply airflow rates for the *baseline building design* shall be based on a supply-air-to-room-air temperature difference of 20°F or the required ventilation air or makeup air, whichever is greater. If return or relief fans are specified in the *proposed design*, the *baseline building design* shall also be modeled with fans serving the same functions and sized for the *baseline* system supply fan air quantity less the minimum *outdoor air*, or 90% of the supply fan air quantity, whichever is larger.

G3.1.2.9 System Fan Power. System fan electrical power for supply, return, exhaust, and relief (excluding power to fan-

TABLE G3.1.2.6A Climate Conditions under which Economizers are Included for Baseline Systems 3 through 8

Climate Zone	Conditions
1a, 1b, 2a, 3a, 4a	N.R.
Others	Economizer Included

N.R. means that there is no conditioned building floor area for which economizers are included for the type of zone and climate.

TABLE G3.1.2.6B Economizer High-Limit Shutoff

Climate Zone	High-Limit Shutoff		
1b, 2b, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 7, 8	75°F		
5a, 6a, 7a	70°F		
Others	65°F		

powered VAV boxes) shall be calculated using the following formulas:

For Systems 1 and 2,

$$P_{fan} = CFM_S \cdot 0.3$$
.

For systems 3 through 8,

$$P_{fan} = bhp \times 746 / Fan Motor Efficiency$$
.

where

 P_{fan} = electric power to fan motor (watts)

and

bhp = brake horsepower of baseline fan

motor from Table G3.1.2.9

Fan Motor Efficiency = the efficiency from Table 10.8 for

the next motor size greater than the bhp using the enclosed motor at

1800 rpm.

 CFM_S = the baseline system maximum design supply fan airflow rate in

cfm

G3.1.2.10 Exhaust Air Energy Recovery. Individual fan systems that have both a design supply air capacity of 5000 cfm or greater and have a minimum outdoor air supply of 70% or greater of the design supply air quantity shall have an energy recovery system with at least 50% recovery effectiveness. Fifty percent energy recovery effectiveness shall mean a change in the enthalpy of the *outdoor air* supply equal to 50% of the difference between the *outdoor air* and return air at design conditions. Provision shall be made to bypass or control the heat-recovery system to permit air economizer operation, where applicable.

Exceptions: If any of these exceptions apply, exhaust air energy recovery shall not be included in the *baseline building design*:

- Systems serving spaces that are not cooled and that are heated to less than 60°F.
- b. Systems exhausting toxic, flammable, or corrosive fumes or paint or dust. This exception shall only be used if exhaust air energy recovery is not used in the proposed design.
- c. Commercial kitchen hoods (grease) classified as Type 1 by NFPA 96. This exception shall only be used if exhaust air energy recovery is not used in the proposed design.
- d. Heating systems in climate zones 1 through 3.
- e. Cooling systems in climate zones 3c, 4c, 5b, 5c, 6b, 7, and 8.

- f. Where the largest exhaust source is less than 75% of the design outdoor airflow. This exception shall only be used if exhaust air energy recovery is not used in the *proposed design*.
- g. Systems requiring dehumidification that employ energy recovery in series with the cooling coil. This exception shall only be used if exhaust air energy recovery and series-style energy recovery coils are not used in the *proposed design*.
- h. Systems serving laboratories with exhaust rates of 5000 cfm or greater.
- **G3.1.3** System-Specific Baseline HVAC System Requirements. *Baseline* HVAC systems shall conform with provisions in this section, where applicable, to the specified *baseline* system types as indicated in section headings.
- **G3.1.3.1 Heat Pumps (Systems 2 and 4).** Electric airsource heat pumps shall be modeled with electric auxiliary heat. The systems shall be controlled with multistage space thermostats and an *outdoor air* thermostat wired to energize auxiliary heat only on the last thermostat stage and when outdoor air temperature is less than 40°F.
- G3.1.3.2 Type and Number of Boilers (Systems 1, 5, and 7). The boiler plant shall use the same fuel as the *proposed design* and shall be natural draft, except as noted in Section G3.1.1.1. The *baseline building design* boiler plant shall be modeled as having a single boiler if the *baseline building design* plant serves a conditioned floor area of 15,000 ft² or less and as having two equally sized boilers for plants serving more than 15,000 ft². Boilers shall be staged as required by the load.
- **G3.1.3.3 Hot-Water Supply Temperature (Systems 1, 5, and 7).** Hot-water design supply temperature shall be modeled as 180°F and design return temperature as 130°F.
- **G3.1.3.4** Hot-Water Supply Temperature Reset (Systems 1, 5, and 7). Hot-water supply temperature shall be reset based on outdoor dry-bulb temperature using the following schedule: 180°F at 20°F and below, 150°F at 50°F and above, and ramped linearly between 180°F and 150°F at temperatures between 20°F and 50°F.
- G3.1.3.5 Hot-Water Pumps (Systems 1, 5, and 7). The baseline building design hot-water pump power shall be 19 W/gpm. The pumping system shall be modeled as primary-only with continuous variable flow. Hot-water systems serving 120,000 ft² or more shall be modeled with variable-speed drives, and systems serving less than 120,000 ft² shall be modeled as riding the pump curve.

TABLE G3.1.2.9 Baseline Fan Brake Horsepower

Baseline Fan Motor Brake Horsepower			
Constant Volume Systems 3–4	Variable Volume Systems 5–8		
$CFM_s \cdot 0.00094 + A$	$CFM_s \cdot 0.0013 + A$		

Where A is calculated according to Section 6.5.3.1.1 using the pressure drop adjustment from the proposed building design and the design flow rate of the baseline building system. Do not include pressure drop adjustments for evaporative coolers or heat recovery devices that are not required in the baseline building system by Section G3.1.2.10.

G3.1.3.6 Piping Losses (Systems 1, 5, 7, and 8). Piping losses shall not be modeled in either the *proposed* or *baseline building designs* for hot water, chilled water, or steam piping.

G3.1.3.7 Type and Number of Chillers (Systems 7 and 8). Electric chillers shall be used in the *baseline building design* regardless of the cooling energy source, e.g., direct-fired absorption, absorption from purchased steam, or purchased chilled water. The *baseline building design's* chiller plant shall be modeled with chillers having the number and type as indicated in Table G3.1.3.7 as a function of building peak cooling load.

G3.1.3.8 Chilled-Water Design Supply Temperature (Systems 7 and 8). Chilled-water design supply temperature shall be modeled at 44°F and return water temperature at 56°F.

G3.1.3.9 Chilled-Water Supply Temperature Reset (Systems 7 and 8). Chilled-water supply temperature shall be reset based on outdoor dry-bulb temperature using the following schedule: 44°F at 80°F and above, 54°F at 60°F and below, and ramped linearly between 44°F and 54°F at temperatures between 80°F and 60°F.

The baseline building design pump power shall be 22 W/gpm. Chilled-water systems with a cooling capacity of 300 tons or more shall be modeled as primary/secondary systems with

G3.1.3.10 Chilled-Water Pumps (Systems 7 and 8).

more shall be modeled as primary/secondary systems with variable-speed drives on the secondary pumping loop. Chilled-water pumps in systems serving less than 300 tons cooling capacity shall be modeled as a primary/secondary systems with secondary pump riding the pump curve.

G3.1.3.11 Heat Rejection (Systems 7 and 8). The heat rejection device shall be an axial fan cooling tower with two-speed fans. Condenser water design supply temperature shall be 85°F or 10°F approaching design wet-bulb temperature, whichever is lower, with a design temperature rise of 10°F. The tower shall be controlled to maintain a 70°F leaving water temperature where weather permits, floating up to leaving water temperature at design conditions. The *baseline building design* condenser-water pump power shall be 19 W/gpm. Each chiller shall be modeled with separate condenser water and chilled-water pumps interlocked to operate with the associated chiller.

TABLE G3.1.3.7 Type and Number of Chillers

Building Peak Cooling Load	Number and Type of Chiller(s)
≤300 tons	1 water-cooled screw chiller
>300 tons, <600 tons	2 water-cooled screw chillers sized equally
≥600 tons	2 water-cooled centrifugal chillers minimum with chillers added so that no chiller is larger than 800 tons, all sized equally

G3.1.3.12 Supply Air Temperature Reset (Systems 5 through 8). The air temperature for cooling shall be reset higher by 5°F under the minimum cooling load conditions.

G3.1.3.13 VAV Minimum Flow Setpoints (Systems 5 and 7). Minimum volume setpoints for VAV reheat boxes shall be 0.4 cfm/ft² of floor area served or the minimum ventilation rate, whichever is larger.

G3.1.3.14 Fan Power (Systems 6 and 8). Fans in parallel VAV fan-powered boxes shall be sized for 50% of the peak design flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan-powered boxes shall be equal to 30% of peak design flow rate or the rate required to meet the minimum outdoor air ventilation requirement, whichever is larger. The supply air temperature setpoint shall be constant at the design condition.

G3.1.3.15 VAV Fan Part-Load Performance (Systems 5 through 8). VAV system supply fans shall have variable-speed drives, and their part-load performance characteristics shall be modeled using either Method 1 or Method 2 specified in Table G3.1.3.15.

TABLE G3.1.3.15 Part-Load Performance for VAV Fan Systems

Method 1—Part-Load Fan Power Data				
Fan Part-Load Ratio Fraction of Full-Load Power				
0.00	0.00			
0.10	0.03			
0.20	0.07			
0.30	0.13			
0.40	0.21			
0.50	0.30			
0.60	0.41			
0.70	0.54			
0.80	0.68			
0.90	0.83			
1.00	1.00			

Method 2—Part-Load Fan Power Equation

 $P_{fan} = 0.0013 + 0.1470 \times PLR_{fan} + 0.9506 \times (PLR_{fan})^2 - 0.0998 \times (PLR_{fan})^3$ where

 P_{fan} = fraction of full-load fan power and PLR_{fan} = fan part-load ratio (current cfm/design cfm).

TABLE G3.2 Power Adjustment Percentages for Automatic Lighting Controls

Automatic Control Device(s)	Non-24-h and ≤ 5000 ft ²	All Other
1. Programmable timing control	10%	0%
2. Occupancy sensor	15%	10%
Occupancy sensor and programmable timing control	15%	10%
N . 5000 02 1111		0.1 1 1111

Note: The 5000 ft² condition pertains to the total conditioned floor area of the building.

NOTICE

INSTRUCTIONS FOR SUBMITTING A PROPOSED CHANGE TO THIS STANDARD UNDER CONTINUOUS MAINTENANCE

This standard is maintained under continuous maintenance procedures by a Standing Standard Project Committee (SSPC) for which the Standards Committee has established a documented program for regular publication of addenda or revisions, including procedures for timely, documented, consensus action on requests for change to any part of the standard. SSPC consideration will be given to proposed changes within 13 months of receipt by the manager of standards (MOS).

Proposed changes must be submitted to the MOS in the latest published format available from the MOS. However, the MOS may accept proposed changes in an earlier published format if the MOS concludes that the differences are immaterial to the proposed change submittal. If the MOS concludes that a current form must be utilized, the proposer may be given up to 20 additional days to resubmit the proposed changes in the current format.

ELECTRONIC PREPARATION/SUBMISSION OF FORM FOR PROPOSING CHANGES

An electronic version of each change, which must comply with the instructions in the Notice and the Form, is the preferred form of submittal to ASHRAE Headquarters at the address shown below. The electronic format facilitates both paper-based and computer-based processing. Submittal in paper form is acceptable. The following instructions apply to change proposals submitted in electronic form.

Use the appropriate file format for your word processor and save the file in either a recent version of Microsoft Word (preferred) or another commonly used word-processing program. Please save each change proposal file with a different name (for example, "prop01.doc," "prop02.doc," etc.). If supplemental background documents to support changes submitted are included, it is preferred that they also be in electronic form as word-processed or scanned documents.

ASHRAE will accept the following as equivalent to the signature required on the change submittal form to convey non-exclusive copyright:

Files attached to an e-mail: Electronic signature on change submittal form

(as a picture; *.tif, or *.wpg).

Files on a CD: Electronic signature on change submittal form

(as a picture; *.tif, or *.wpg) or a letter with submitter's signature accompanying the CD or sent by facsimile

(single letter may cover all of proponent's proposed changes).

Submit an e-mail or a CD containing the change proposal files to:

Manager of Standards ASHRAE 1791 Tullie Circle, NE Atlanta, GA 30329-2305

E-mail: change.proposal@ashrae.org

(Alternatively, mail paper versions to ASHRAE address or fax to 404-321-5478.)

The form and instructions for electronic submittal may be obtained from the Standards section of ASHRAE's Home Page, www.ashrae.org, or by contacting a Standards Secretary, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. Phone: 404-636-8400. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

FORM FOR SUBMITTAL OF PROPOSED CHANGE TO AN ASHRAE STANDARD UNDER CONTINUOUS MAINTENANCE

NOTE: Use a separate form for each comment. Submittals (Microsoft Word preferred) may be attached to e-mail (preferred), submitted on a CD, or submitted in paper by mail or fax to ASHRAE, Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail: change.proposal@ashrae.org. Fax: +1-404/321-5478.

1. Submitter:					
Affiliation:					
Address:	City:	State:	Zip:	Country:	
Telephone:	Fax:	E-Mail:			
exclusive royalty rights publication of the stand	erican Society of Heating, Refrigerations, including non-exclusive rights in collard in which my proposals in this or to grant this copyright release.	opyright, in my proposals	. I understar	d that I acquire no rig	thts in
Submitter's signature:		Date	:		_
All electronic submitt	als must have the following stateme	nt completed:			
the American Society including non-exclusive	of Heating, Refrigerating and Air-Coverights in copyright, in my proposal cosals in this or other analogous form right release.	nditioning Engineers (AS ls. I understand that I acq	HRAE) the uire no right	non-exclusive royalty is in publication of the	rights, stan-
2. Number and year o	f standard:				
3. Page number and c	lause (section), subclause, or parag	graph number:			
4. I propose to: (check one)	[] Change to read as follows[] Add new text as follows				
Use underscores to	show material to be added (added) and strike	through material to be deleted	(deleted). Use	additional pages if needed.	
5. Proposed change:					
6. Reason and substan	ntiation:				
7. Will the proposed c to why the increase is	hange increase the cost of engineer justified.	ring or construction? If	yes, provid	e a brief explanation	as
[] Check if attachme	al pages are attached. Number of addints or referenced materials cited in the nces are relevant, current, and clearly	is proposal accompany the			

POLICY STATEMENT DEFINING ASHRAE'S CONCERN FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members' activities on both the indoor and outdoor environment. ASHRAE's members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE's short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its *Handbook*, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system's intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE's primary concern for environmental impact will be at the site where equipment within ASHRAE's scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.

About ASHRAE

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), founded in 1894, is an international organization of some 50,000 members. ASHRAE fulfills its mission of advancing heating, ventilation, air conditioning, and refrigeration to serve humanity and promote a sustainable world through research, standards writing, publishing, and continuing education.

For more information or to become a member of ASHRAE, visit www.ashrae.org.

To stay current with this and other ASHRAE standards and guidelines, visit www.ashrae.org/standards.

— · —

ASHRAE has two collections of standards and guidelines available on CD that include one year of unlimited access to download monthly updates, including addenda, errata, and interpretations. *ASHRAE Standards and Guidelines* contains the complete library, and *Essential Standards* contains ASHRAE's 12 most referenced standards and guidelines. Both include the User's Manuals for Standard 90.1 and Standard 62.1. For more information on these products, visit the Standards and Guidelines section of the ASHRAE bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE standards and guidelines will no longer be distributed with copies of the standards and guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form in order to promote more sustainable use of resources.

Product Code: 86147 05/10